Math 103B

Sadly this markdown version does not render perfectly and it would take way too much work to port it over from the original notion source. Please refer to: the Notion version of this text

Review

Monoid

A monoid has two properties,

Adding a third property

    • ()

Groups

A Group is a Monoid with Inverses

Abelian Group

A group with Communativity is an Abelian Group

Examples:

  • - Abelian Group
  • - Monoid (Abelian Monoid because )
    • 0 is not invertible
  • = {0, 1, …, n - 1} - Abelian Group
  • - Monoid
  • - Abelian Group
  • - Monoid
  • - Abelian Group
    • \begin{pmatrix} 2 & 0\\ 1 & -1 \\end{pmatrix} + \\begin{pmatrix} 3 & 1\\ 0 & 1 \\end{pmatrix} = \\begin{pmatrix} 5 & 1\\ 1 & 0 \\end{pmatrix}
    • Identity Element is the 0 matrix
    • Inverse - make each element in matrix negative
  • - Monoid
    • \begin{pmatrix} 2 & 0\\ 1 & -1 \\end{pmatrix} \cdot \\begin{pmatrix} 3 & 1\\ 0 & 1 \\end{pmatrix} = \\begin{pmatrix} 6 & 2\\ 3 & 0 \\end{pmatrix}
    • Identity Element is the identity matrix
  • - Abelian Group
  • - Monoid
    • Identity Element:
    • is not invertable
    • Invertible elements have no roots (do not intersect x axis)
  • - Monoid
    • Not invertible, is not invertible (Must be bijective)

Rings

A ring is a set with operations +, ⋅ such that

  1. Abelian Group
  2. Monoid

A ring is called commutative if , is a commutative monoid

  • Matrix Multiplication / Addition is a non Communative Ring
  • Continuous Functions form a communative ring
  • Function Composition is not a ring

Subring Test

A subset is a subring if it is closed under and

  • is a subgroup of
    • S is closed under subtraction
  • is a submonoid of
    • S is closed under multiplication

Properties inherited to subrings

  1. Commutativity
  2. Domain (no zero-divisors) Being a field / division ring is not inherited

Remark: We also know . Since , so

Example:

  1. are subrings!

  2. not a subring

  3. \mathbb{Z}\[\\sqrt{2}\] = {a+b\sqrt{2}\ |\ a, b \in \mathbb{Z} } \subset \mathbb{R}

    Subring test: 1=1+0\sqrt2 \in \mathbb{Z}\[\\sqrt2\]

    Multiplication: (a+b\sqrt2)(c+d\sqrt2) = ac+ad\sqrt2+b\sqrt2c+ b\sqrt2\cdot d\sqrt2 = (ac+2bd)+(ad+bc)\sqrt2 \in \mathbb{Z}\[\\sqrt2\]

    Subtraction: (a+b\sqrt2)-(c+d\sqrt2)=(a-c)+(b-d)\sqrt2 \in Z\[\\sqrt2\]

    \therefore \mathbb{Z}\[\\sqrt2\] \subset \mathbb{R} it is a subring!

  4. \mathbb{Z}\[i\] = {\ a+bi\ |\ a,b\in\mathbb{Z}} \subset \mathbb{C} - Gaussian Integers (subring)

\\begin{matrix} & \Bbb{C} & \\ / & & \backslash \\ \| & & \Bbb{R} \\ \| & & | \\ \\Bbb{Z}\[i\] & &\Bbb{Z}\[\\sqrt2\] \\ \\backslash & & / \\ &\Bbb{Z} & \\end{matrix}

Remark: “lines are transitive” in this diagram, namely, if is a subring and is a subring, then is a subring

is a subring 2. B(\mathbb{R}) {f: \mathbb{R}\rightarrow \mathbb{R} bounded continuous functions}= {}\subset C(\mathbb{R}) = {f: \mathbb{R}\rightarrow \mathbb{R} continuous functions}

Polynomial Rings

“Polynomial Ring over R” \Longleftrightarrow \ R\[x\]

R\[x\] = {r_0+r_1x+r_2x^2+\cdots+r_nx^n\ |\ r_0,\cdots,r_n\in \mathbb{R}}

Polynomial Addition Formula

Polynomial Multiplication Formula

Remark: (R\[x\], +, \cdot) is a ring (assuming R is an arbitary ring)

Remark: A ring is communitive if

  • - Commutative Rings
  • - Non Commutative

When is R\[x\] commutative? ⇒ if R\[x\] is commutative then R is, conversely, if R is commutative then R\[x\] is commutative

Using the formula for polynomial multiplication, we find that

Therefore, R\ is \ Commutative\ \Longleftrightarrow\ R\[x\]\\ is\ Commutative

Remark: Is \mathbb{R}\[x\] \subset C(\mathbb{R}) a subring? ⇒ No, but \notin \mathbb{R}\[x\]

Remark: R\[x\] is defined for an arbitary ring R. We can have a ring, \mathbb{Z} \rightarrow \mathbb{Z}\[x\] \rightarrow (\mathbb{Z}\[x\])\[y\] = \mathbb{Z}\[x,y\] . Which gives us a polynomial of y with coefficents from x or vice versa.

Direct Sums

Suppose that are rings. Define the direct sum

Addition:

Multiplication:

Examples:

  1. M_2(\mathbb{R}) \oplus \mathbb{Z}\[x\]
  2. ← Iterative direct sum

Remarks on Direct Sums:

  1. If are subrings, then is a subring
  2. is a subring

Ring Proofs

Commutativity

Recall: R is commutative if

Remark: If R is commutative and is a subring, then S is also cummutative. In particular, \mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{Z}\[\\sqrt2\], \mathbb{Q}\[i\] are all commutative

Example: is commutative whereas is not

Definition: Let R be a ring. The center of R is:

In other words, Z(R) is the set of elements in R that commute with any other element of R.

Remark:

  1. We always have this is because
  2. If then Pf. Let be arbitary, we need to show that But, so,
  3. If then Pf. Let be arbitary, we need to show that Indeed, ← Associativity of ← Associativity of ← Associativity of

Corollary: (the center) is a subring

Examples:

  1. If R is commutative then
  2. , then Z(R) = {\begin{pmatrix} \\alpha & \cdots & 0 \\ \\vdots & \ddots & \vdots \\ 0& \cdots & \alpha \\ \\end{pmatrix}|\ \alpha \in \mathbb{C}}
  3. If (where S is another ring), then Z(R)={\begin{pmatrix} \\alpha & \cdots & 0 \\ \\vdots & \ddots & \vdots \\ 0& \cdots & \alpha \\ \\end{pmatrix}|\ \alpha \in Z(S)}
  4. Z(R\[x\])=(Z(R))\[x\] ← The center of a polynomial ring is a polynomial ring over the center of R
  5. ← The center of the direct sum of two wrings is the direct sum of the centers

Units

Let R be a ring. The set of units in R is:

Where and are units or invertible elements. We denote or is the inverse of

Remark:

  1. since
  2. since
  3. If then is unique: if and then:
  4. One must be careful, it is possible that but is not a unit

Proposition: is a group

Proof: First, let us show that is closed under ⋅ If Then:

is a unit

Neutral Element ( Identity element ) is by the above remark

If then, by the definition of a unit, there exits an such that but it follows that

Therefore is a group. (Associativity of ⋅is ensured by the fact that R is a ring, hence is associative.

Examples:

  1. (What are the units in the ring of integers) ← (Every nonzero element of is invertible in )

(For example, , not invertible within because . However, if we think of , it is invertible within because )

  1. ← What are the units of the integers mod n Exactly the coprime to n residues: The cardinality of is ← Eulers totient function

Remark: (From 103A): is prime The units of the Integers mod n is equal to the integers up to n excluding zero if n is a prime number

Question: How to invert mod n?

are coprime

is the “Residue”

← Once we have 1, we now invert

So, so, in

  1. ← invertible matrices
  2. R=\mathbb{Z}\[i\]={\ a+bi\ |\ a,b\in Z\ } \mathbb{Z}\[i\]^x=\ ?

Using: or, , So, or or For conclusion, \mathbb{Z}\[i\]^x={\pm1, \pm i}

Definition: A ring is called a division ring if

There are inverses for every element except 0

Definition: A commutative division ring is called a field

In other words, a field is a system with “all reasonable axioms” where we can divide except for

Examples:

Fields

Field (p prime)

\mathbb{Z},\ \mathbb{Z}\[i\], \mathbb{Z}\_6, \cdots not fields

division ring that is not a field

Remark:

In other words, is a unit (in ) iff and

Proof:

If then,

Exercise: (if then )

Example: How many units are there in ?

units

Definition: An element is a zero-divisor if there exists such that or

Examples:

  1. In 2, 3, 4 are zero divisors and 1, 5 are units

  2. In

    0&0\\1&0 \\end{pmatrix} \\begin{pmatrix} 0&1\\0&0 \\end{pmatrix}= \\begin{pmatrix} 0&0\\0&0 \\end{pmatrix}$$ # $$\begin{pmatrix} 0&1\\0&0 \\end{pmatrix} \\begin{pmatrix} 0&0\\1&0 \\end{pmatrix} \\begin{pmatrix} 1&0\\0&0 \\end{pmatrix}$$

Proposition: If then is not a zero divisor

Proof:

Assume on the contrary that yet a zero divisor. So: such that

Case 1:

Case 2:

In any case, , a contradiction

Note: Units are never zero divisors

Remark: In general, there might be elements that are neither units nor zero divisors

Note: Units are generators in

Domains

Definition: A ring R is a domain if it has no zero divisors. R is an integral domain if it is a communative domain

Examples:

  1. is an integral domain
  2. If R is a division ring then it is a domain

(Because in a division ring, non-zero elements are units, but we saw that units cannot be zero-divisors!)

  1. If R is a field then it is an integral domain
\\begin{matrix} Field & \implies & Integral\ Domain \\ \Downarrow & & \Downarrow \\ Division Ring & \implies & Domain \\end{matrix}

Properties of Domains

  1. Domains are “canellative” If

Proof:

Suppose that in a domain. Then, . In a domain, if a product of two elements is 0 then one of them must be 0. Since , it follows that . Namely,

Remark: If your ring is not a domain, do not expect it to be cancellative

In , but

Proof: Suppose R is a domain subring

Let be non-zero, let us prove that . But are non-zero, and R is a domain, so

If in addition R is commutative, then so is S

Remark: A subring of a field need not be a field Ex. Not a field → ← Field

Corollary: \mathbb{Z}, \mathbb{Z}\[{\sqrt2}\], \mathbb{Z}\[{i}\], \cdots \subset \mathbb{C} therefore they are integral domains

Proposition: If R is a domain then R\[x\] is also a domain

(And if R is an integral domain then so is R\[x\]

Corollary: If F is a field then F\[x\] is an integral domain.

Moreover, F\[x,y\],\ F\[x,y,z\],\cdots are integral domains

Remark: Any subring of a field is an integral domain and conversely, if R is an integral domain then it is a subring of a field

Ex. \mathbb{Z} \subset \mathbb{Q},\ \mathbb{Z}\[i\] \subset \mathbb{Q}\[i\], \cdots

Remark: Any subring of a division ring is a domain. It is tempting to conjugate that any domain is a subring of a division ring. But that’s not true!

Homomorphisms

Homomorphism

Definition: A homomorphism is a “Structure-Preserving Map”

Group Homomorphism:

(It follows that , identity mapped to identity)

Example:

Addition group of integers →

Definition: A function (where and are rings) is a ring homomorphism if:

  1. (Namely, is a group homomorphism )

Remark: It is guarenteed that if is a ring homomoprhism, then

Examples:

  1. For any ring R, the identity map is a ring homomorphism
  2. If is a subring, then the inclusion map: is a ring homomorphism. E.g.,

  1. A non-example: by is - preserving, - preserving, but not a ring homomorphism since , a violation of the 3rd axiom
  2. f:\mathbb{C}\rightarrow M_2(\mathbb{R}) \\ f(a+bi)= \\begin{pmatrix} a & b \\ -b & a \\end{pmatrix}\\$$f(2-3i)=\begin{pmatrix}2&-3\\3&2\end{pmatrix}\\ f((a_1a_2-b_1b_2)+(a_1b_2+b_1a_2)i)$$\implies \begin{pmatrix} a_1a_2-b_1b_2 & a_1b_2+b_1a_2\\ -(a_1b_2+b_1a_2) & a_1a_2-b_1b_2 \\end{pmatrix} vs 2x2 matrix multiplication \begin{pmatrix} a_1 & b_1\\ -b_1 & a_1 \\end{pmatrix}\begin{pmatrix} a_2 & b_2\\ -b_2 & a_2 \\end{pmatrix}=\begin{pmatrix} a_1a_2-b_1b_2 & a_1b_2+b_1a_2\\ -b_1a_2-a_1b_2 & -b_1b_2+a_1a_2 \\end{pmatrix} As we can see they both yield the same result f(1)=1\_{M_2(\mathbb{R})}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \\end{pmatrix} Indeed, f(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\end{pmatrix}
  3. Let R be a ring f:R\[x\]\\rightarrow R Polynomial Ring over R → R That’s always a ring homomorphism (Exercise: Check)

Definition: A ring homomorphism

  1. Injective homo/monomorphism if ← (1:1)
  2. Surjective homo/monomorphism if ← (Onto)
  3. Isomorphism: Injective + Surjective ← (Bijective)

Examples:

Surjective

Not Injective because

  1. f(a+bi)=\begin{pmatrix}a&b\\-b &a\end{pmatrix}$ $f(a_1+b_1i)=f(a_2+b_2i)$$ $$\begin{pmatrix} a_1 & b_1\\ -b_1 & a_1 \\end{pmatrix} = \\begin{pmatrix} a_2 & b_2\\ -b_2 & a_2 \\end{pmatrix} \\ \implies a_1=a_2, b_1=b_2 \implies a_1+b_1i=a_2+b_2i$$ Injective Not Surjective because $$\begin{pmatrix} 1 & 1\\ 1 & 1 \\end{pmatrix}$$ does not have a source under $f$
  2. f:\mathbb{Z} \rightarrow \mathbb{Z}*2\[x\]

Not Injective 2 and 4 both mapped to 0

Not Surjective x doesn’t have a source

  1. For any ring , ← an isomorphism (Call an isomorphsim from a ring to itself “automorphism”)
  2. aka “complex conjugation” is a ring/field automorphism

Ring Homomorphisms

Remark - Basic Properties of Homomorphsims:

  1. f(r\cdot r\cdot \cdots \cdot r)=f(r)\cdot \cdots \cdot f(r)$$ ← n times

Recall that a ring homomorphism which is injective and surjective (namely bijective) is called an isomorphsim.

Defintion: Two rings are isomorphic to each other if there is an isomorphsim Denoted

Remark:

  1. If is an isomorphism, then the inverse function: is also an isomorphism
  2. If are isomorphic ( rings) Then, is Proof: >

Multiplication is very similar

  1. Every ring is isomorphic to itself (find an iso) Properties of rings, preserved under isomorphisms

    Examples:

  • Cardinality
  • Commutativity
  • Being a domain, field, division ring
  • Having isomorphic addition groups
  • Having isomorphic groups of units (if then )
  • Existence of an element for which (If is an isomorphism and such that , then and )

Remark: An example of a function that preserves but not 1 (therefore not a homomorphism):

\\ \ \ \ \ f((a,b))=(0,b)$$ **Examples:** 1. $\mathbb{Z}\_6 \cong \mathbb{Z}\_8$? ←(No, different cardinalities) 1. $\mathbb{Q} \cong \mathbb{R}$? ←(No, different cardinalities - $\mathbb{Q}$ is countable, $\mathbb{R}$ is uncountable) 1. $\mathbb{Z} \cong \mathbb{Q}$? (No, $\mathbb{Q}$ is a field but $\mathbb{Z}$ is not) 1. $M_2(\mathbb{R})\cong \mathbb{C} \oplus \mathbb{C}$? (No, LHS is not commutative but RHS is commutative) $\mathbb{C} \oplus \mathbb{C}$ ← not a domain $(0,1)\cdot (1,0) = (0,0)$ there are zero-divisors **Remark:** The direct sum of two rings is never a domain 1. $\mathbb{Z}\cong \mathbb{Z} \oplus \mathbb{Z}$? ← No, $\mathbb{Z}$ is a domain but $\mathbb{Z} \oplus \mathbb{Z}$ is not 1. $\mathbb{Z} \oplus \mathbb{Z} \cong \mathbb{Z}\oplus \mathbb{Z}\oplus \mathbb{Z}$ ← No, calculating the units for both sides, we see that the units are not the same $U(\mathbb{Z} \oplus \mathbb{Z}) = U(\mathbb{Z}) \oplus U(\mathbb{Z}) = 4$ $U(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}) = U(\mathbb{Z}) \oplus U(\mathbb{Z})\oplus U(\mathbb{Z}) = 8$ 1. $\mathbb{R}\cong \mathbb{C}$? ← No, suppose we had $f:\mathbb{C}\rightarrow \mathbb{R}$ iso $f(i)^2=f(i^2)=f(-1)=-f(1)=-1$ So, there is a real number $f(i)$ whose square is $-1$. That is false. 1. $\mathbb{Z}\[i\] \cong \mathbb{Z}\[\\sqrt2\]$? (hint: use hw 2) 1. $\mathbb{Z}\_{15}\cong \mathbb{Z}\_5\oplus\mathbb{Z}\_3$ ← (yes, isomorphic because of Chinese remainder theorem) **Definition:** Chinese Remainder Theorem - If $n, m$ are coprime numbers $(n,m>1)$ then $\mathbb{Z}\_{nm}\cong \mathbb{Z}\_n \oplus \mathbb{Z}\_m$ ($\mathbb{Z}\_{24}\not\cong \mathbb{Z}*2 \oplus \mathbb{Z}*{12}$) because $2,12$ are not coprime Shift back to homomorphisms, not necessarily isomorphic Let $f:R\rightarrow S$ be a ring homomorphism $Im(f)={s\in S\ |\ \exists\ r \in R: f(r)=s} \subseteq S$ $Ker(f)={r\in R\ |\ f(r)=0_S } \subseteq R$ **Remark:** * $Im(f) \subseteq S$ is a subring of $S$ * $Ker(f) \subseteq R$ is closed under $+, \cdot$ but is not a subring ( If $1_R\in Ker(f),$ then $f(1_R)=0_S$, but $f(1_R)=1_S,$ we obtain $1_S=0_S$, impossible!) **Remark:** A ring homomorphism is surjective $**\\Longleftrightarrow$ $Im(F)=S$** A ring homomorphism is injective $\Longleftrightarrow Ker(f)={0_R}$ **Proof:** ($\Rightarrow$) Suppose $f:R\rightarrow S$ is an injective homomorphism. Obviously, $f(0_R)=0_S$ so $0_R\in Ker(f)$. Suppose that $0\neq r\in R$, if $r\in Ker(f)$ then: $f(r)=0_S=f(0_R),$ contradicting injectivity. Therefore $Ker(f)={0_R}$ ($\Leftarrow$) Suppose $Ker(f)={0_R},$ let us prove that f is injective Suppose $f(r_1)=f(r_2),$ let us show $r_1=r_2$$f(r_1)=f(r_2)\implies f(r_1)-f(r_2)=0_S \implies f(r_1-r_2)=0_S\implies r_1-r_2 \in Ker(f)={0_R}$ so, $r_1-r_2 = 0_R\implies r_1=r_2$ **Exercise:** $f: \mathbb{R} \oplus \mathbb{R} \rightarrow M_2(\mathbb{R}) \\ f((a,b))=\begin{pmatrix} 2a-b & -2a+tb \\ a-b & -a+2b \\end{pmatrix}$ This is a ring homomorphism Calculate $Ker(f)$ and deduce whether f is injective or not $f: \mathbb{Z}\_{15}\rightarrow \mathbb{Z}*5 \\ f(a)=a*{\mod 5}$ this is a ring, calculate $Ker(f)$ ### Injective / Surjective A ring homomorphism $f:R\rightarrow S$ is surjective if $Im(f) =S$ (Namely if every $s\in S$ has a source) A ring homomorphism $f:R\rightarrow S$ is injective if it is $1:1$, equivalently if $Ker(f) = {0_R}$ or ${r\in R\ |\ f(r)=0_S}$ **Example:** Let $f:\Bbb{C} \rightarrow M_2(\Bbb{R})$ be given by

f(a+bi)=\begin{pmatrix} a-3b & -2b \ 5b & a+ 3b \end{pmatrix}

This is indeed a ring homomorphism. Is it injective? **Solution:** Calculate $ker(f)$ $$\lbrace a+bi\ |\ \\begin{pmatrix} a-3b & -2b \\ 5b & a+3b \\end{pmatrix} =0\_{M_2(\Bbb{R})} \\rbrace$$ $\implies \begin{matrix} a-3b = 0 \implies \underline{a=0} \\ -2b = 0 \implies \underline{b = 0}\\ 5b=0 \\ a+3b = 0 \end{matrix}$ $\implies$Therefore the only complex number $a+bi$ which is mapped to 0 is 0 $\implies ker(f) = {0}$, thus, $f$ is injective F is not surjective: 1. $\begin{pmatrix}0&0\\1&0\end{pmatrix}\notin Im(f)$ Otherwise $\begin{pmatrix}0&0\\1&0\end{pmatrix} = \begin{pmatrix}a-3b & -2b \\ 5b & a+3b\end{pmatrix}\implies \begin{matrix}b=0\\ b= \frac{1}{5}\end{matrix}\implies contradiction$ 1. $f$ is injective, so if $f$ is surjective, then it is not an isomorphism. But, $\Bbb{C}\not\cong M_2(\Bbb{R})$, $\Bbb{C}$ is commutative, $M_2(\Bbb{R})$ is not. # Chinese Remainder Theorem (CRT) **Theorem:** If $n,m > 1$ are coprime numbers, then: $\Bbb{Z}\_{nm}\cong \Bbb{Z}\_n \oplus \Bbb{Z}\_m$ (a ring isomorphism) **Remark:** For example, $\Bbb{Z}*{15}\cong \Bbb{Z}*3 \oplus \Bbb{Z}*5$, but $\Bbb{Z}*{120}\cong \Bbb{Z}*{10} \oplus \Bbb{Z}*{12}$, as 10 and 12 are not coprime **Proof:** Suppose that $n,m>1$ are coprime. Define a function: $f:\Bbb{Z}*{nm} \rightarrow \Bbb{Z}*n \oplus \Bbb{Z}*m$ by $f(a) = (a*{(mod\ n)}, a*{(mod\ m)})\ \forall\ a\in \Bbb{Z}*{nm}$ This is a ring homomorphism: $f(1)=1,\ f(a+b)=f(a)+f(b),\ f(ab)=f(a)f(b)$ Exercise: Verify **Proof:** Let us show that f is surjective Pick $s \in \Bbb{Z}\_n,\ t \in \Bbb{Z}*m$. We aim to show that $(s,t)\in Im(f),$ namely, that there is $x\in \Bbb{Z}*{nm}$ For which $f(x)=(s,t)=(x\_{mod\ n}, x\_{mod\ m})$ Namely: $\begin{matrix} x=s(mod\ n)\\ x=t(mod\ m) \\end{matrix}$ Since $n, m$ are coprime, by the Euclidean Algorithm. There is a linear combination: $un+vm=1\ |\ u,v\in \Bbb{Z}$ (For example, 5,7 are coprime we have a linear combination $3\cdot 5+(-2)\cdot 7 = 1$) Consider $x=t\cdot un+s\cdot vm \in \Bbb{Z}$, (consider $x\_{(mod\ nm)}$) We claim that $x\equiv s\_{(mod\ n)},\ x\equiv t\_{(mod\ m)}$ $x\_{(mod n)}\equiv tun+svm\_{(mod\ n)}$ ← $tun=0$ $\equiv svm\_{(mod\ n)} \equiv s\cdot (1-un)*{(mod\ n)} \equiv s-sun*{(mod\ n)}$ ← $sun=0$ $\equiv s\_{(mod\ n)}$ $x\_{(mod m)}\equiv tun+svm\_{(mod\ m)}$ ← $svm=0$ $\equiv tun\_{(mod\ m)} \equiv t\cdot (1-vm)*{(mod\ m)} \equiv t-tvm*{(mod\ m)}$ ← $tvm=0$ $\equiv t\_{(mod\ m)}$ Therefore, $x\equiv s\_{(mod\ n)}$, $x\equiv t\_{(mod\ m)}$ as required. It follows that $f:\Bbb{Z}*{nm} \rightarrow \Bbb{Z}*{n} \oplus \Bbb{Z}\_{m}$ is a surjective ring homomorphism Since $|\Bbb{Z}*{nm}| = n\cdot m = |\Bbb{Z}*{n}\oplus \Bbb{Z}\_{m}|,$ and f is surjective, it is in fact bijective. Hence, $f$ is a ring homomorphism $\ \square$ **Example:** Find $x\in \Bbb{Z}*{35}$ such that $x\equiv 3*{(mod\ 5)}, x\equiv 6\_{(mod\ 7)}$ Step 1: Find a linear combination $35=7\cdot 5$ ← 7 and 5 are coprime $u\cdot 7+ v\cdot 5 = 1\ | u=3,\ v=-2$ ← Linear Combination $(7,5)=(5,2)=(2,1)$ $x=t\cdot un + s\cdot vm=3\cdot (-2)\cdot 7+6\cdot 3 \cdot 5=-42+90=48\_{(mod\ 35)}=13=x$ $13\_{(mod\ 5)} \equiv3$ $13\_{(mod\ 7)} \equiv 6$ **Application:** How many units are there in $\Bbb{Z}\_{35}$? $5,\ 7$ are coprime $\implies \Bbb{Z}*{35}\cong \Bbb{Z}*{5} \oplus \Bbb{Z}\_{7}$ But that means that $\Bbb{Z}*{35}^x \cong (\Bbb{Z}*{5}\oplus \Bbb{Z}*{7})^x=\Bbb{Z}*{5}^x\oplus \Bbb{Z}\_{7}^x=4\cdot 6 = 24$ **Recall:** Units in $\Bbb{Z}\_n$ are exactly residues that are coprime with n **Notation:** $\phi(n) =$ number of residues mod n which are coprime with n **Recall:** If $f: R\rightarrow S$ is a ring homomorphism, then: * $\text{Im} f = {s\in S:\exists r\in R: f(r)=s} \subseteq S$ * $\text{ker} f ={r\in R: f(r)=0_s}\subseteq R$ $f$ is injective (one-to-one) $\Longleftrightarrow$ $\ker f={0_R}$ $f$ is surjective (onto) $\Longleftrightarrow$ $\text{Im} f= S$ ## Properties of Im, kernel of $f$ 1. $\text{Im} f\subseteq S$ is a subring 1. $\ker f\subseteq R$ 1. is an additive subgroup 1. contains $0_R$ 1. $\forall x\in \ker f, r\in R, xr, rx\in\ker f$ 1. $1_R\not\in\ker f$ # Ideals **Definition:** A subset $I\vartriangleleft R$ of a ring is called an **ideal** if: 1. It is an additive subgroup of $R$ (it contains 0 and is closed under $\pm$) 1. $I$ is closed under multiplication by an arbitrary element of $R$.

\forall x\in I, r\in R,\ rx,xr\in I

1. It is a proper subset since $1_R\not\in I$ 1. If $1\in I$ then $\forall\ r \in R, r= r\cdot 1 \in I\implies R = I$ $R$ is not an ideal of itself, it is an “improper ideal” Examples: 1. $f:\mathbb{Z}\rightarrow\mathbb{Z}$ $a\mapsto a\pmod n$ $\ker f ={a\in\mathbb{Z}:a\equiv0\pmod n}={...,-2n, -n,0,n,2n,...}= n\Bbb{Z}$ $f$ is an ideal What do ideals of $\mathbb{Z}$ look like? Any $I\vartriangleleft \mathbb{Z}$ is an additive subgroup of $(\mathbb{Z},+)$ and is cyclic: $m\mathbb{Z}$ for some integer $m$ 1. Let $F$ be a field. $f:F\[x\]\\rightarrow F$ $f(p(x))=p(0)=a_0+a_1(0)+a_2(0)^2+\cdots+a_n(0)^n=a_0$ Then $f$ is a ring homomoprhism. $\ker f ={p(x)\in F\[x\]:p(x)=a_1x+a_2x^2+\cdots+a_nx^n}$, the set where the leading coefficient is equal to 0. Given $\alpha\in F,$ $f:F\[x\]\\rightarrow F$ $f(p(x))=p(\alpha)$ If $\alpha=1,$ $f(p(x))=\sum\_{k=0}^na_k$, the sum of all coefficients. $\ker f={p(x)\in F\[x\]:p(\alpha)=0}$ 1. $f:\mathbb{Z}\[i\]\\rightarrow\mathbb{Z}\_5$ $f(a+bi)=(a+2b)\pmod 5$ **Exercise**: Verify $f$ is a ring homomorphism. Is there a homomorphism $g:\mathbb{Z}\[i\]\\rightarrow\mathbb{Z}\_7$? (more difficu $\ker f={a+bi:a,b\in\mathbb{Z}:a+2b\equiv0\pmod 5}$ (equivalently $a\equiv3b\pmod 5)$ For example, $4+3i\in\ker f$ 1. Suppose $F$ is a field. What are the ideals of $F$? ${0_F}\vartriangleleft F$ Let $I\vartriangleleft F$ be an ideal of a field. If $0\not=x\in I.$ Then, $x^{-1}\in I$. But then $x^{-1}x=1\in I$ which is a contradiction. Thus, ${0_F}$ is the only ideal of a field. **Corollary:** If $I\vartriangleleft R$, then $I$ contains no units. **Exercise:** If $F$ is a field, then the only ideal of $M_n(F) \text{ is } {0}$ For the rest of the lecture, $R$ is a commutative ring. (some of this can be found in section 5.4 of the textbook) **Definition:** Let $S\subseteq R$ be a subset. The ideal **generated** by $S$, denoted $\langle\ S\ \rangle \vartriangleleft R,$ is

\boxed{\langle\ S\ \rangle = \left{ \sum_{i=1}^m r_is_i:r_i\in R,s_i \in S\right}}

**Exercise:** Prove $\langle\ S\ \rangle \vartriangleleft R$ is an ideal (but possibly improper) **Remark:** $<S>$ is the smallest ideal of $R$ that contains $S$. If $J\vartriangleleft R, S\subseteq J\Rightarrow I\subseteq J$ **Examples:** 1. Ideals of $\mathbb{Z}$ are of the form ${a\in\mathbb{Z}:a\equiv0\pmod m}={xn:x\in \mathbb{Z}}=<n>$ 1. $\<6,10>\vartriangleleft \mathbb{Z}$ $\<6,10>={r_1\cdot6+r_2\cdot10:r_1,r_2\in\mathbb{Z}}\subseteq\<2>$ since all the elements are even numbers We want to show that $\<2>\subseteq\<6,10>$ by showing $2\in\<6,10>$ $2=(-3)(6)+(2)(10)\in\<6,10>$ Thus, $\<6,10>=\<2>$ In general for $\mathbb{Z}$, $\<a,b>=\<\\gcd(a,b)>$ **Exercise**: Prove it 1. $F\[x\]$ ${p(x)\in F\[x\]:\text{ zero constant term}}=\langle\ x\ \rangle={p(x)\cdot x:p(x)\in F\[x\]}$ **Summary:** Ideal: $I \triangleleft R$ * Additive subgroup * Closed under multiplication with arbitrary elements of R * Proper Ideal generated by a set $S\subseteq R$ - subset

\langle\ S\ \rangle = \left{ \sum_{i=1}^m r_is_i:r_i\in R,s_i \in S\right}

Examples: 1. $\langle\ 2\ \rangle \triangleleft \Bbb{Z} = {\ r\cdot 2\ |\ r\in \Bbb{Z}\ }= 2\mathbb{Z} = {\text{ Even Integers }}$ 1. $\langle\ n\ \rangle \triangleleft \Bbb{Z} \text{ is } n\Bbb{Z} = {\text{ all integers divisible by n}}$ 1. $\langle\ 6,\ 8\ \rangle \triangleleft \Bbb{Z} = {r_1\cdot 6 +r_2\cdot 8\ |\ r_1,r_2 \in \Bbb{Z}\ } = \langle\ 2\ \rangle$ 1. $\langle\ n,\ m\ \rangle = \langle\ \text{gcd}(n,m)\ \rangle$ 1. If $n,m$ are coprime, $\langle\ n, m\ \rangle = \Bbb{Z}$ ← “Improper Ideal” 1. $\langle\ x\ \rangle \triangleleft F\[x\] = {\ f(x)\cdot x\ |\ f(x)\in F\[x\]\\ }={\text{ polynomials with free term 0}}={\ \text{ker }(F\[x\]\\to F\ |\ x=0)}$ ## Principal Ideal Definition: \*\*\*\*An ideal $I \triangleleft R$ is principal if it is generated by a single element (R is assumed to be a commutative ring)

I=\langle\ r\ \rangle={a\cdot r\ |\ a\in R\ }=R\cdot r

**Proposition:** Suppose that $\langle\ r\ \rangle=\langle\ s\ \rangle$ in $R$. Then, $r=s\cdot u$ where $u\in R^x$. Conversely, if $r,s\in R \text{ and } r=s\cdot u \text{ for } u\in R^x,\text{ then } \langle\ r\ \rangle =\langle\ s \rangle$ **Examples:** (Prop): 1. $\langle\ 2\ \rangle = \langle\ -2\ \rangle \text{ in } \Bbb{Z}$ ($-1$ is the only $\neq 1$ element in $\Bbb{Z}$ ) 1. In $\Bbb{Z_6}:$ $\langle \ 2 \ \rangle = {\ 0,\ 2,\ 4\ } = \langle\ 4\ \rangle = {\ 0,\ 4,\ 2\ }$ 1. In $\Bbb{R}\[x\],\ \langle\ 2x+1\ \rangle = \langle\ -x-\frac{1}{2}\ \rangle \implies (2x+1)=-2(-x-\frac{1}{2})$ is a unit in $\Bbb{R}\[x\]$ **Proof:** (of proposition): Suppose $r,s\in R$ and $r=u\cdot s$ for $u\in R ^x$. Let us prove $\langle\ r\ \rangle = \langle\ s\ \rangle$. Recall that $\langle\ S\ \rangle$ is the smallest ideal containing S. Thus,

\begin{cases} \text{ if } r\in \langle\ s \ \rangle\implies \langle\ r\ \rangle \subseteq \langle\ s\ \rangle \ \text{ if } s\in \langle\ r \ \rangle\implies \langle\ s\ \rangle \subseteq \langle\ r\ \rangle \end{cases} \ \implies \text{It suffices to show: } r\in \langle\ s\ \rangle,s\in \langle\ r\ \rangle \ \implies r=u\cdot s \in \langle\ s\ \rangle={a\cdot s:\ a\in R} \ s=u^{-1}r\in \langle\ r\ \rangle,\text{ hence }\langle\ s\ \rangle=\langle\ r\ \rangle

**Proof of Converse:** Suppose that $r,s\in R \ st. \langle\ r\ \rangle =\langle\ s\ \rangle$. $r\in \langle\ r\ \rangle=\langle\ s\ \rangle={\ a\cdot s \in r\ }$ Thus, $\exists \ a\ st.\ r=a\cdot s$ . Similarly,

\exists\ b\in R\ st.\ s=b\cdot r\ r=a\cdot s=a\cdot b \cdot r\ (1- a \cdot b)\ r=0

Since $R$ has no zero divisors and $r\neq 0$, then $1-ab=0\implies ab=1$ Thus, $a\in R^x$ Hence $r=a\cdot s$ for $a\in R^x$ **Definition:** A ring is a principal integral domain (PID) if it is an integral domain if every ideal is a principal **Examples:** 1. $\Bbb{Z}$. Every ideal of $\Bbb Z$ is an additive subgroup. Subgroups of $(\Bbb Z, +)$ are cyclic $\implies \langle\ n\ \rangle = n\Bbb Z$. So, ${\ \text{ideals of }\Bbb Z\ }={\ n\Bbb Z: n\in \Bbb Z \ }$ 1. Any field is a PID **Note:** The only ideal of a field is ${\ 0\ }$ which is clearly principal **Non-Example:** $\Bbb Z \[x\]$ is an integral domain WTS: $\exists$ ideal that is not principal Take $I \triangleleft \Bbb Z\[x\]$ to be $I = \langle\ 2,\ x\ \rangle \triangleleft \mathbb{Z}\[x\]$ $\langle\ 2,\ x\ \rangle={\ f(x)\cdot2+g(x)\cdot x\ |\ f,g\in \mathbb{Z}\[x\]\\ }$ Show $I$ isn’t principal Assume to the contrary that $\langle\ 2,\ x\ \rangle=\langle\ g(x)\ \rangle\ |\ g(x)\in \mathbb{Z}\[x\]$ $2=h_1(x)g(x)$ for some $h_1(x)\in \mathbb{Z}\[x\]$ So degree of $g=0,\ g(x)=n,$ a constant Also, $x=h_2(x)g(x) = h_2(x)\ n \implies deg(h_2)\leq 1$ $h_2(x)=a+bx \implies x=an+bnx \implies an=0, \ bn=1 \implies n=\pm 1$ $\implies \langle \ g(x)\ \rangle = \mathbb{Z}\[x\]$ $1=p(x)\cdot 2 + q(x)\cdot x \implies 1$ is even Free term $p(x)$ is even and Free term $q(x)$ is zero This is a Contradiction so we conclude that $\langle\ 2,\ x\ \rangle$ is not principal $F\[x\]$, F is a field, is always a PID * $\mathbb{Z}\[i\]-\text{PID}$ * $\mathbb{Z}\[\\sqrt2\]-\text{PID}$ * $\mathbb{Z}\[\\sqrt{-2}\]-\text{PID}$ * $\mathbb{Z}\[\\sqrt{-5}\]-\text{Not a PID}$ Ideal is principal:

I=\langle\ r\ \rangle={a\cdot r\ |\ a\in R\ }=R\cdot r\ (\ \langle\ 3\ \rangle\triangleleft \mathbb{Z}, \langle\ 3\ \rangle={\ a\cdot 3\ |\ a\in \mathbb{Z}\ }=\mathbb{Z}\cdot 3 = 3\ )

**Definition:** PID - Integral domain in which every ideal is principal Examples of PID: $\mathbb{Z},\ \mathbb{Z}\[i\],\ F-\text{Field}$ Non-Examples of PID: $\mathbb{Z}\[x\], \mathbb{Z}\[\\sqrt{-5}\], ...$ Let R be a commutative ring (integral domain) **Definition:** For $r,s\in R$, then $r\ |\ s$ $(\text{r divides s})$ if $\exists\ a\in R\ st.\ s=a\cdot r$ **Examples:** 1. In $\mathbb{Z}$, $3|6$ 1. In $R\[x\],\ x-1\ |\ x^3-1$ Exercise: If $f,g\in F\[x\]\\text{ and } f\ |\ g$ then $deg(f)\leq deg(g) \text{ (converse false)}$ In an integral domain R, 1. $r\ |\ s \iff \langle\ s\ \rangle \subseteq \langle\ r\ \rangle$ 1. $\langle\ r\ \rangle=\langle\ s\ \rangle\iff r=u\cdot s \text{ for } u\in R^x$ **Remark:** In an integral domain R: 1. $r\ |\ s \iff \langle\ s\ \rangle \subseteq\ \langle\ r\ \rangle$ 1. $\braket{\ r\ } = \langle \ s\ \rangle \iff r=u\cdot s \text{ for some }u\in R^x$ ### Division Algorithm for $F\[x\]$ Let $f(x),g(x)\in F\[x\]$, then $\exists\ q(x), r(x) \in F\[x\]\\ st: f(x)=q(x)g(x)+r(x)$ and either $r(x)=0$ or $deg(r)\<deg(g)$ **Proof:** Let $f(x)=\sum\_{i=0}^na_ix^i,\ g(x)=\sum\_{j=0}^mb_jx^j$ So $deg(f)=n\text{ and } deg(g)=m\ st.\ a_n\neq 0, b_m\neq 0$ Case 1: $n\<m: (\text{base case})$ Take $q(x)=0,\ r(x)=f$ Then $f=q\cdot g+r=0+r$ $deg(r)=deg(f)=n\<m=deg(g)$ Case 2: $n\geq m:$ Perform induction on n

\text{Take }q(x)=\frac{a_n}{b_m}x^{n-m},\text{ Then:}\ q(x)g(x)=\frac{a_n}{b_m}x^{n-m}\cdot \sum_{i=0}^mb_ix^i=\sum_{i=0}^{m}\frac{a_nb_i}{b_m}x^{i+n-m} \= \frac{a_m\cdot \cancel{b_m}}{\cancel{b_m}}x^{m+n-m}=a_nx^n+\text{ lower deg polynomial }

Now, $f(x)-q(x)g(x)=\sum{a_ix^i}-a_nx^n+\sum c_ix^i = a_nx^n+...$ So $deg\[f(x)-q(x)g(x)\]\\leq n-1$ By inductive hypothesis $f-q\cdot g=h\cdot g+r$ for $h,r\in F\[x\]$ and either $r=0\text{ or } deg(r)\<deg(g)$ So $f=(h+q)\cdot g+r$ **Example:** Divide $x^7+2x+1$ by $x^2+1$ (with residue) over $\mathbb{R}$

\begin{array}{r} x^5-x^3+x\phantom{} \ x^2+1{\overline{\smash{\big)},x^7+2x+1}} \ \underline{-(x^7+x^5)} \phantom{111}\ -x^5+2x+1\phantom{} \ \underline{-(x^5+x^3)}\phantom{111} \ -x^3+2x+1\ \underline{x^3+x\phantom{1111}}\ r(x)\longrightarrow x+1

\end{array}

$\implies x^7 +2x +1 = (x^5-x^3+x)\underbrace{(x^2+1)}*{\text{deg = 2}} + \underbrace{(x+1)}*{\text{deg = 1}}$ **Theorem:** $F\[x\]$ ($F$ is a field) is a PID **Proof:** Let $0\neq I \rhd F\[x\]$ Pick $0\neq f\in I$ of lowest possible degree Since $f\in I, \braket{\ f\ }\subseteq I$ WTS $I=\braket{\ f\ }$ Let $g\in I,$ then by the divison algorithm, $\exists\ q,r\in F\[x\]\\ st.\ g(x)=q(x)f(x)+r(x)$ Either $r(x)=0$ or $deg(r)\<deg(f)$ $r(x)=\underbrace{g(x)}*{\in I}-q(x)\underbrace{f(x)}*{\in I} \in I$ Then, $r(x)$ must equal 0 because $f$ was of lowest possible degree in $I$ so $deg(r)\<deg(f)$ which is impossible. Then, $g(x)=q(x)\cdot f(x)\in \braket{\ f\ }$ Therefore, $I\subseteq \braket{\ f\ }$ so $I \in \braket{\ f\ }$. In particular, $I$ is principal **Corollary:** ${\text{ Ideals of } F\[x\]\\ } \xleftrightarrow{1:1} {\text{ monic polynomial of } F\[x\]\\ }$ Every ideal is a principal and we can normalize its highest term, multiplying it by a unit scalar $\braket{\ f\ }=\braket{\ g\ },\ f,g \text{ monic } \implies f=g$ $F\[x\]$ is a PID if every ideal is generated by a single element $I \rhd F\[x\]$ $I = \braket{\ f(x)\ }=F\[x\]\\cdot f(x)=\left{\ g(x)\cdot f(x) \mid g(x)\in F\[x\]\\ \right}$ **Example:** $\braket{\ x^2+1\ } \rhd \mathbb{R}\[x\] \to \braket{\ x^2+1\ } = {\ g(x)\cdot (x^2+1)\mid g(x)\in \mathbb{R}\[x\]\\ }$ $\underbrace{x^4-1}\_{=\ q(x)(x^2+1)+r(x)}\in \braket{\ x^2+1\ }=(x^2-1)(x^2+1)$ $\braket{\ f\ }= \braket{\ g\ } \iff f=u\cdot g\mid u\in F\[x\]^x$ $F\[x\]^x=F \backslash {0} \implies p(x)\cdot q(x)=1$ **Corollary:** Every Ideal $I\rhd F\[x\]$ is $I=\braket{\ f(x)\ }$ where $f(x)$ is monic: $f(x)=x^n+a\_{n-1}x^{n-1}+\cdots + a_0$ Moreover, if $f,g$ are monic polynomials then $\braket{\ f\ }=\braket{\ g\ } \iff f=g$ Note: Must assume $f,g$ are monic because $\braket{\ x^2+1\ } = \braket{\ -2x^2-2\ }$ ${\ \text{Ideas in }F\[x\]\\ } \xleftrightarrow{1:1}{\ \text{non-constant monic polynomnial}\ }$ $\braket{\ f\ } \longleftrightarrow f$ **Question:** Why Ideals? * $f:R\to S \implies ker(f)\lhd R$ * $I\lhd R\to \exists\ \underbrace{\pi: R\to R/I}\_{ker(\pi)=I}$ ### Quotient Rings Let $R$ be a ring, $I\lhd R$. Define the quotient ring $R/I$

\boxed{R / I={\ r+I\mid r\in R}}\ r+I:{\ r+\alpha\mid \alpha \in I\ }={\ x\in R\mid x-r\in I\ }

**Example:** $R=\mathbb{Z}$ $I=3\mathbb{Z}$

R/I = \mathbb{Z}/3\mathbb{Z}={\ a+3\mathbb{Z}: a\in \mathbb{Z}\ } \ = 0+3\mathbb{Z}= {\cdots, -6,-3,0,3,6,\cdots } \ = 1+3\mathbb{Z}= {\cdots, -5,-2,1,4,7,\cdots } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots

**Remark:** $r+I=s+I\iff r-s\in I$ $2+3\mathbb{Z}=5+3\mathbb{Z} \iff 5-2 = 3 \in 3\mathbb{Z}$ ### Making R / I a Ring Addition: $\underbrace{(r+I)+(s+I)}*{\text{addition of cosets}}=\underbrace{(r+s)}*{\text{addition in the ring}}+I$ $(2+3\mathbb{Z})+(2+3\mathbb{Z})=(2+2)+3\mathbb{Z} = 4+3\mathbb{Z} = 1+3\mathbb{Z}$ Multiplication: $(r+I)\cdot (s+I)=r\cdot s+I$ $(2+3\mathbb{Z})\cdot (2+3\mathbb{Z})=4+3\mathbb{Z}=1+3\mathbb{Z}$ Well Defined?

(2+3\mathbb{Z})=(-7+3\mathbb{Z})=(14+3\mathbb{Z})\ (-7+3\mathbb{Z})+(14+3\mathbb{Z})=(7+3\mathbb{Z})=(1+3\mathbb{Z})\ (-7+3\mathbb{Z})\cdot (14+3\mathbb{Z})=(-98+3\mathbb{Z})=(1+3\mathbb{Z})

\*Need to show this is always true **Claim:** Addition and Multiplication on $R/I$ are well defined WTS: **Proof:** Suppose that $r+I,\ s+I\in R/I$ Assume that $r+I=r'+I,s+I=s'+I$ WTS: $(r+s)+I=(r'+s')+I\iff (r+s)-(r'+s')\in I$ $(r+s)-(r'+s') = \underbrace{(r-r')}*{\in I}+\underbrace{(s-s')}*{\in I}$ since $r+I=r'+I,\ s+I=s'+I$ Μultiplication: Suppose that $r+I=r'+I, s+I=s'+I\in R/I$ $(r+I)\cdot (s+I)=(r'+I)\cdot (s'+I)\iff rs+I=r's'+I$ WTS: $r\cdot s - r'\cdot s'\in I$ $r'-r=\alpha \in I$ $s'-s=\beta \in I$ $\implies rs-r's'=rs-(r+\alpha)(s+\beta)= \underbrace{-r\beta}*{\in I}-\underbrace{\alpha s}*{\in I}-\underbrace{\alpha\beta}\_{\in I}\in I$ So, multiplication and addition are well-defined ### Zero Element $0+I=I$ $(0+I)+(r+I)=(0+r)+I=r+ I$ $0+I$ is the zero coset $1+ I$ is the unity coset $(1+I)\cdot (r+I)=(1\cdot r)+I=r+I$ Exercise: Show ring axioms hold in $R/I$ There is a surjective ring homomorphism $\pi:R\to R/I\\ \\pi(r)=r+I$ Exercise: Show that $\pi$ is a surjective ring homomorphism and find $ker(\pi)$ (which should be $I$) Given $I\rhd R \to R/I={\ r+I: r\in R\ }$ is a quotient ring, $0\_{R/I}=I$, $1\_{R/I}=1+I$ **Recall:** $r+I=s+I\iff r-s\in I$ $\pi: R\to R/I \\ \\pi(r)=r+I$ $\pi$ is a surjective homomorphism where $ker(\pi)=I$ **Remark:** If $R$ is a finite $R$, then $\underbrace{|I| \mid |R|}\_{\text{Legrange theorem}}$and $|R/I| = \frac{|R|}{|I|}$ **Examples:** 1. $R=\mathbb{Z}, I=3\mathbb{Z}$ , $\bar x$ means coset of $x, x+I$ $R/I=\mathbb{Z}/3\mathbb{Z} = {\ \bar 0, \bar 1, \bar 2\ }$ is a complete set of distinct coset representations

\def\arraystretch{1.5} \begin{array}{c|c|c|c} \cdot & \bar 0 & \bar 1 & \bar 2 \ \hline \bar 0 & \bar 0 & \bar 0 & \bar 0 \ \hline \bar 1 & \bar 0 & \bar 1 & \bar 2 \ \hline \bar 2 & \bar 0 & \bar 2 & \bar 1 \end{array} \phantom{111111111111} \def\arraystretch{1.5} \begin{array}{c|c|c|c}

  • & \bar 0 & \bar 1 & \bar 2 \ \hline \bar 0 & \bar 0 & \bar 1 & \bar 2 \ \hline \bar 1 & \bar 1 & \bar 2 & \bar 0\ \hline \bar 2 & \bar 2 & \bar 0 & \bar 1 \end{array}
1. $F\[x\]/\braket{\ f(x)\ }={\ \overline{ h(x)}: deg(h)\<deg(f)\ }$ Claim: this is a complete set of distinct cosets **Proof:** Fix a coset in $F\[x\]/\braket{\ f(x)\ }$ and pick any eleemnt in it, $g(x)$ By the division algorithm $g(x)=q(x)f(x)+r(x)$, where $r(x)=0$ or $deg(r)\<deg(f)$ Now, $\bar g = \overline{q\cdot f +r} = \underbrace{\overline{qf}}\_{=\ 0 \text{ b/c } qf\in \braket{f}} + \overline r \implies \bar g = \bar r$ WTS: They are distinct cosets Suppose $h_1,h_2$ have degree smaller than f If $\overline{h_1}=\overline{h_2}\implies h_1=h_2$ (Claim) But, $deg(h_1(x)-h_2(x)) \< deg(f)$ ← Exercise: prove this However, $h_1(x)-h_2(x)= q(x)f(x)\implies h_1-h_2=0$ Because $deg(LHS)\<deg(RHS)$ So, $h_1(x)=h_2(x)$ $\square$ **Remark:** In $F\[x\],\ deg(f(x)\pm g(x))\leq max{\ deg(f),\ deg(g)\ }$ $deg(f(x)\cdot g(x) ) \geq deg(f)+deg(g)$ Unless $f$ is $0$ or $g$ is $0$ 2a. $F=\mathbb{Z}\_2 = {\ 0, 1\ }$

\begin{rcases} \mathbb{Z}_2[x]/\braket{\ x^2+x+1\ }= {\ \bar 0, \bar 1,\bar x, \overline{x+1}\ } \ \mathbb{Z}_2[x]/\braket{\ x^2+1\ }= {\ \bar 0, \bar 1,\bar x, \overline{x+1}\ } \end{rcases}

Symbolically, they are the same, but cosets are different Exercise: write addition and multiplication tables for these rings. Conclude their additive groups are isomorphic to $\mathbb{Z}\_2 \times \mathbb{Z}\_2$. Conclude that $\mathbb{Z}\_2\[x\]/\braket{\ x^2+x+1\ }$ is a field and $\mathbb{Z}\_2\[x\]/\braket{\ x^2+1\ }$ is not a field How to determine the ring structure of $R/I$ ## 1st Isomorphism Theorem Suppose $f: R\to S$ is a ring homomorphism Then, $R/\underbrace{kerf}*{Ideal of R} \cong \underbrace{Imf}*{\text{Subring of } S}$

\boxed{\text{First Isomorphic thm: } R/kerf\cong Imf}

Proof: Define a homomorphism $g: R/ker(f)\to Im(f)$ $g(r+ker(f))= f(r)\in Im(f)$ First, show g is well defined If $\bar r = \bar s,$ then $g(\bar r ) = f(r)\text{ and } g(\bar s) = f(s)$ $r-s\in ker(f)$ So, $r=s+\alpha$ for $\alpha \in ker(f)$ $f(r)=f(s+\alpha)= f(s)+f(\alpha)=f(s)$ Second, show g is a ring homomorphism ← Exercise Next, show g is surjective

\begin{matrix} R& \rightarrow {R/ker(f)} \xrightarrow{\textasciitilde\text{g}} & Im(f) \subseteq S\ & & \ R & \xrightarrow{f} & Im(f) \subseteq S \end{matrix}

Let $s \in Im(f),$ then $\exists \ r\in R\ s=f(r)$ So $g(\bar r)= f(r) = s$ So $g\in Im(g)$ Finally, we show $g$ is injective. $ker(g) = {\ r+ker(f): g(r+ker(f))=0\ } \\ = {\ r+ker(f): f(r)=0 \ } \\ = {\ r+ker(f): r\in ker(f) \ } =\ {\ ker(f)\ }$ So, $g$ in injective $\square$ **Example:** 1. $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}\_n$ $f:\mathbb{Z}\rightarrow \mathbb{Z}\_n,$ ← f surjective ring homomorphism $f(a)=a(mod\ n)$ st. $ker(f)=n\mathbb{Z}$ By 1st isomorphism theorem $\mathbb{Z}/\underbrace{ker(f)}*{n\mathbb{Z}} \cong \underbrace{Im(f)}*{\mathbb{Z}\_n}$ 1. $F\[x\]/\braket{\ x- \alpha \ } \cong F$ ← $\alpha \in F$ Find a surjective ring homomorphism $f:F\[x\] \rightarrow F$ S.t. $ker(f) = \braket{\ x-\alpha \ }$ Conclude by 1st isomorphism theorem that $F\[x\]/\braket{\ x-\alpha \ }$ is isomorphic to $F$ **Examples:** $F=\Bbb Q ,\ f(x)=x^2-2$ $\mathbb Q \[x\] / \braket{\ x^2-2\ }={\ \overline{a+bx}: a,b\in \mathbb Q\ }$ How to determine the structure of $R/I$ ? 1st Isomorphism Theorem $F: R\to S\\ R/ker(s)\cong Im(f)$ Claim: $\mathbb Q \[x\] / \braket{\ x^2-1 \ } \cong \mathbb Q \[\\sqrt 2\] \subseteq \mathbb{R}$ Lemma: Let $0\neq I \lhd F\[x\]$ Then, $I = \braket{\ f(x)\ }\iff f(x)\in I$ is of minimum degree $f: \Bbb Q \[x\] \to \Bbb Q \[\\sqrt 2\]$ $f$ is surjective and $ker(f) = \braket{\ x^2 -2\ } \overbrace\implies^{\text{1st Iso Thm}} \Bbb Q \[x\]/\braket{x^2 -2}\cong \Bbb Q \[\\sqrt 2\]$ $f(p(x))=p(\sqrt 2)$ $f(x^2 -2)= (\sqrt2)^2 -2=0$ **Example:** $\mathbb{R}\[x\] / \braket{\ x^2 +1\ }\cong \Bbb C$ $f: \mathbb{R}\[x\]/\braket{\ x^2 +1\ }\to \Bbb C$ $f(p(x))=p(i)$ Ex. $f(-1+2x+3x^2-\frac{1}{\sqrt 2}x^3 )= -1 +2i+3i^2-\frac{1}{\sqrt2 }i^3=-4+(2+\frac{1}{\sqrt2}) i$ $ker(f) =$ (use the lemma!) Exercise: Find ker(f) $\mathbb{R}\[x\]/\braket{\ x^2-1\ }\cong \mathbb{R}\oplus \mathbb{R}$ When is $R/I$ a field? 1. If $R$ is commutative, then so is $R/I$ (Exercise: Give an example of a homomorphism R st. $R/I$ is commutative) 1. When is every element of $R/I$ a unit? ### Maximal Ideal **Definition:** We say $I \rhd R$ is a maximal ideal if there is no proper ideal strictly containing $I$ Equivalently, $I\subseteq J \lhd R\implies I=J$ **Example:** F - Field $\implies {\ 0\ } \lhd f$ is maximal Suppose that ${\ 0\ } \subseteq I \lhd F$ If $\exists\ 0 \neq x \in J$, then $1 = x^{-1}\cdot x \in J \to J$ is improper It follows that ${\ 0\ }$ is maximal **Theorem:** If $R$ is a commutative ring and $I \rhd R$ $R/I$ is a field $\iff I$ is a maximal ideal $I$ is maximal if $\forall \ I \subseteq J \lhd R\implies I = J$ Note: Proof in lecture 18/19 will add later **Example:** $R=\mathbb{Z}$, every ideal takes the form $\underbrace{n\mathbb{Z}}*{n\neq 1}$, $n\in \mathbb{Z}*{\geq 0}$ If $n$ is not prime, then it has a proper factor $1\< m\<n$. Then, $n=k\cdot m,\ k\in \mathbb{Z}$ So $n\mathbb{Z}\subset m\mathbb{Z},$ (proper subset because $m$ is not divisible by $n$ $\implies n\mathbb{Z}$ is not maximal Equivalently, if $n\mathbb{Z} \lhd \mathbb{Z}$ is maximal then $n$ is prime Conversely, if $n=p$ is prime, then $\implies \mathbb{Z}/p\mathbb{Z}\cong \mathbb{Z}\_p \text{ is a field}$ $\implies \mathbb{Z}/p\mathbb{Z}\ \text{ is a field}$ $\implies p\mathbb{Z}\lhd \mathbb{Z} \text{ is maximal}$ In $\mathbb{Z},$ $n\mathbb{Z} \lhd \mathbb{Z} \text{ is maximal } \iff \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}\_n \text{ is a field }\iff n\text{ is prime}$ **Example:** $R=\mathbb{Z}\_6$ Lattice of proper ideals

{\ 0, 3\ }=\begin{matrix} & \mathbb{Z}_6 & \ \phantom{111}\diagup& &\diagdown\phantom{111} \ \braket{\ 3\ } & & \braket{\ 2\ } \ \phantom{111}\diagdown& &\diagup \phantom{111}\ & {\ 0\ }& \end{matrix}= {\ 0, 2,4\ }

$\braket{\ 2\ }, \braket{\ 3\ }\lhd \mathbb{Z}\_6 \text{ are maximal }$ $\begin{rcases} \\mathbb{Z}\_6/\braket{\ 2\ }\cong \mathbb{Z}\_2 \\ \\mathbb{Z}\_6/\braket{\ 3\ }\cong \mathbb{Z}\_3 \\end{rcases} \text{ 1st Isomorphism Theorem}$ **Example:** $R=\mathbb{Z}\_2\oplus \mathbb{Z}\_2= {\ (0,0),\ (1,0),\ (0,1),\ (1,1)\ }$

\text{Lattice of add subgroups}\ \begin{matrix} & \mathbb{Z}_2\oplus \mathbb{Z}_2 & \ \phantom{111}\diagup& |&\diagdown\phantom{111} \ \braket{\ (1,0)\ } & \braket{\ (1,1)\ } & \braket{\ (0,1)\ } \ \phantom{111}\diagdown&| &\diagup \phantom{111}\ & {\ 0\ }& \end{matrix}

\text{Lattice of Proper Ideals}\ \begin{matrix} & \mathbb{Z}_2\oplus \mathbb{Z}_2 & \ \phantom{111}\diagup& &\diagdown\phantom{111} \ \braket{\ (1,0)\ } & & \braket{\ (0,1)\ } \ \phantom{111}\diagdown& &\diagup \phantom{111}\ & {\ 0\ }& \end{matrix}

**Example:** $R=\mathbb{Z}$

\text{Lattice of Proper Ideals}\

![School/proper_ideals.png](proper_ideals.png) $F\[x\],\ F$ is a field, is a PID. What are the maximal ideals? What are the fields obtained as quotient / homomorphic images of $F\[x\]$? $I\rhd F\[x\],$ then $I=\braket{\ f(x)\ }$ **Remark:** 1. $\braket{\ f(x)\ }= F\[x\]\\iff f(x) \text{ is a unit} \iff f(x)\text{ is a non-zero scalar}$ 1. $\braket{\ f(x)\ }= \braket{\ g(x)\ } \iff f(x)=u\cdot g(x)\text{ for } u\in F\[x\]^x \iff f(x)=\alpha \cdot g(x) \text{ for } \alpha \neq 0 \text{ scalar}$ 1. $\braket{\ f(x)\ } \subseteq \braket{\ g(x)\ }\iff g(x) \mid f(x),\\ \text{ namely }\exists\ q(x) \in F\[x\]:f(x)=q(x)\cdot g(x)$ #  Irreducibility **Definition:** We say that $f(x)\neq \text{ scalar } \in F\[x\]$ is irreducible if for any $g(x)\in F\[x\]$ such that $g(x)\mid f(x),$ either $g(x)=\alpha$ is scalar or $g(x)=\alpha \cdot f(x)$ for a scalar $\alpha \neq 0$ **Definiton:** $g(x) \text{ divides } f(x),\ g(x) \mid f(x) \text{ if } \exists \ q(x)\in F\[x\]\\ st. \ f(x)=g(x)\cdot q(x)$ We say $g(x)$ is a proper divisor of $f(x)$ if $g(x)\mid f(x)$ and $g(x)\neq \text{scalar and }g(x)\neq \alpha \cdot f(x),\ \alpha \in \mathbb{R}$ **Example:** $f(x)=x^2 -1 \in \mathbb{R}\[x\]$ * $\underbrace{(\frac{1}{2}x^2+\frac{1}{2})}\_{g}\underbrace{(-2)}\_h=\underbrace{x^2-1}\_f$ $g,h$ are not proper ideals * $x^2 -1=\underbrace{(x-1)}\_p\underbrace{(x-1)}\_q$ $p,\ q$ are proper divisors **Remark:** $g\mid f$ is a proper divisor $\iff 0\<\\text{deg(g)}\< \text{deg(f)}$ **Proof:** $\impliedby 0 \<\\text{deg(g)} \<\\text{deg(f)}\implies g\neq \alpha \cdot f\text{ as } (\alpha \cdot f)=\text{deg(f)}$ $\implies \text{deg(g)} > 0$ ← $g$ is a proper divisor If $\text{deg(g)=deg(f)},$ then$f(x)=g(x)\cdot q(x)\implies \text{deg(q(x))}=0 \implies q(x)=\alpha \in \mathbb{R}$ This is a contradiction since $g$ is a proper divisor $\square$ **Dictionary:** $I=\braket{\ f(x) \ }\lhd F\[x\],\ J=\braket{\ g(x)\ }\lhd F\[x\]$

\text{Dictionary} \ \def\arraystretch{1.7} \begin{array}{c | c} I\rhd R & F[x] \ \hline I=0 & f(x)=0 \ \hline I=R & f(x) \text{ is a non-zero scalar} \ \hline I\lhd R\text{ (proper) } & \text{ deg( f(x) ) > 0} \ \hline I\subseteq J & g(x) \mid f(x) \ \hline I= J & g(x) =\alpha \cdot f(x),\alpha \in \mathbb{R},\alpha \neq 0 \ \hline I\subset J & g(x) \mid f(x)\text{, but }g(x)\neq \alpha \cdot f(x) \ \hline I\subset J \lhd R \text{ (proper) } & g(x) \mid f(x),g(x)\neq \alpha \cdot f(x), g(x)\text{ not a scalar }\newline &\iff g(x) \text{ is a proper divisor of } f(x) \ \hline I\lhd R \text{ (maximal) } & f(x)\text{ has no proper divisors (irreducible)} \ \end{array}

**Corollary:** TFAE: $(0\neq f(x)\in F\[x\]$ 1. $f(x)$ is irreducible 1. $f(x)$ has no divisors $g(x)\mid f(x)$ of $0\<\\text{deg(g)}\<\\text{deg(f)}$ 1. $\braket{\ f(x)\ }\lhd F\[x\]$ is maximal 1. $F\[x\]/\braket{\ f(x)\ }$ is a field **Example:** Over any field $F$, any linear polynomial $f(x)=ax+b,\ a\neq 0$ is irreducible If $g(x)\mid f(x),\ \deg g \leq \deg f = 1$ so $\deg g = { 0, 1 }$, so it cannot be proper Also, $F\[x\]/\braket{\ ax+b\ }\cong F$ $1^{st}$ Isomorphism Theorem: $\phi: F\[x\]\\to F \\ \phi(f(x))= f(-\frac{b}{a})$ A surjective ring homomorphism with $\ker \phi = \braket{\ ax+b\ }= \braket{\ x- (-\frac{b}{a})}$ **Theorem:** Let $f(x)\in F\[x\], \alpha \in F,$ Then, $f(\alpha )=0\iff x-\alpha \mid f(x)$ **Proof:** $\impliedby x-\alpha \mid f(x), \text{ then } \exists\ q(x) \in F\[x\]\\ st. f(x)=q(x)(x-\alpha)$ So, $f(\alpha)=q(\alpha )(\alpha -\alpha ) =0$ so, $\alpha$ is a root of $f$ $\implies$ Suppose $f(\alpha ) = 0$, $\exists\ q,r\in F\[x\] \ st. \ f(x)=q(x)(x-\alpha )+r(x) \implies \deg(r)\<\\deg(x-\alpha )=1,$ so $r(x)=\beta$ a scalar Substitute $x=\alpha$ $0=f(\alpha)=q(\alpha)(\alpha -\alpha)+\beta \implies\beta = 0 \implies f(x)=q(x)(x-\alpha)$ Thus, $(x-\alpha ) \mid f(x)$ $\square$ **Example:** $f(x)=x^3-2z+1\in \mathbb{R}\[x\]$ $f(1)=0$ $x^3-2x+1=(x^2+x-1)(x-1)$ **Corollary:** If $f(x)$ is a polynomial of degree $> 1$ and $f(x)$ has a root in $F$ then $f(x)$ is not irreducible. Equivalently, if $f$ is irreducible with $\deg(f)>1,$ then $f$ has no roots. Warning! The converse is not true (in general) $f(x)=x^4 +3x^2+2$ has no roots over $\mathbb{R}$ but it is reducible. $f(x)=(x^2+1)(x^2-2)$ **Corollary:** Let $f(x)\in F\[x\]$ st. $\deg f=n$, then $f$ has at most $n$ roots **Proof:** Induction on $n$ Base Case: $n=1$ $f(x) = ax+b,\ a\neq 0$ $ax+b\iff x=-\frac{b}{a}$ so there is $1$ root Inductive step: $\deg f = m+1$ If $f$ has no roots, trivial Suppose $f(\alpha)=0,$ then $f(x)= q(x)(x-\alpha)$ $\deg q = m$ so $q(x)$ has at most $m$ roots. Let $\beta \in F$ be an arbitary root of $f$ $0= f(\beta)=\underbrace{q(\beta)}*{\in \ F} \underbrace{(\beta - \alpha )}*{\in\ F}$ so Either

\begin{cases} \ q(\beta)=0 \ \ \beta - \alpha = 0 \end{cases}

Thus, there are at most $m+1$ roots $\square$ **Lemma:** If $f(x)\in F\[x\] \ st.\ f(x)$ is non constant $\deg f(x)\leq 3$ then $f$ has a root $\iff f$ is not irreducible **Example:** $f(x)=x^2 +x+1\in \mathbb{R}\[x\]$ $deg(f)=2$ $\Delta = b^2 -4ac = -3 \< 0 \implies f$ has no roots $f$ has no roots in $\mathbb{R}$ but it has roots in $\Bbb C$ $F$ - Field $F\[x\] / \braket{\ f(x)\ }$ is a field $\iff f(x)$ is irreducible, $f(x)$ cannot be written as $f(x)=g(x)h(x)$ $x+1=(\frac{1}{2}x+\frac{1}{2})\cdot 2$ in $\mathbb{R}$ is not proper **Recall:** * Linear polynomials are always irreducible * If $f(x)$ of $\deg f > 1$ and $\exists \ \alpha \in F: f(\alpha) = 0\implies f(x) \text{ is reducible }$ * If $\deg f\in {\ 2, 3\ }$, then $f$ irreducible $\iff f$ has no roots in $F$. Not necessarily true for $\deg f \geq 4$ **Remark:** Being irreducible depends on the field. $x^2 +1$ is irreducible in $\mathbb{R}\[x\]$ but is reducible in $\mathbb{C}\[x\]$ **Examples:** 1. $x^2+x+1$ in $\mathbb{Z}\_2\[x\]$ $\deg f=2,\ f(0) = 1, f(2)=1$ so irreducible 1. $x^2 +x+1$ in $\mathbb{Z}\_3\[x\]$ $f(0)=1,\ f(1)=0\implies x\cdot 1 \mid f(x)$

\begin{array}{r} x+2\phantom{1111} \ x-1{\overline{\smash{\big)},x^2+x+1}} \ \underline{-(x^2-x)} \phantom{111}\ 2x+1\phantom{} \ \underline{-(2x-2)}\phantom{} \ 3\ 3_{mod\ 3}=0 \end{array}

So, $x^2 +x+1 = (x+2)^2$ 1. $x^2 +2x+1 \text{ in } \mathbb{Z}\_3$ ← Exercise 1. $f(x)=x^4+x^2 +x+1\text{ in } \mathbb{Z}\_3$ ← Exam Question? Has no roots but $\deg f = 4$ so may still be reducible ← $f=g\cdot h$ $\text{Possible Degrees}\\ \\begin{rcases} \\cancel{(1)(3)} \\ (2)(2) \\ \\cancel{(3)(1)} \\ \\end{rcases}\implies (1)(3),\ (3)(1)$ Impossible because f has no roots It remains to check if $f=g\cdot h$ with $\deg g,h=2$ $x^4+x^2+x+1=(a_1x^2+b_1x+c_1)(a_2x^2+b_2x+c_2)$ $= \underbrace{a_1a_2}\_{=\ 1}x^4+(\cdots)x^3+\cdots$ $= (x^2+b_1x+c_1)(x^2+b_2x+c_2)$ $=x^4+\underbrace{(b_1+b_2)}*{=\ 0}x^3+ \\underbrace{(c_2+b_1b_2+c_1)}*{=\ 1}x^2+ \\underbrace{(b_1c_2+c_1b_2)}*{=\ 1}x+ \\underbrace{c_1c_2}*{=\ 1}$ $\implies b_1=b_2,\ c_2=\frac{1}{c_1}$ $= (x^2+bx+c)(x^2-bx+\frac{1}{c})$ $= x^4+(c-b^2+\frac{1}{c})x^2+(\frac{b}{c}-cb)+1$ $$\begin{cases} c-b^2+\frac{1}{c}=1 \implies \\ \\frac{b}{c}-cb=1\implies \left( b = \cfrac{1}{\cfrac{1}{c}-c}\right),\ c\neq 0,1,2 \\end{cases}$$ So there is no solution. Thus, $f$ is irreducible 1. $x^4+1$ in $\Bbb Q\[x\]$ $f=g\cdot h\implies \text{possible degrees: (1)(3), (2)(2), (3)(1)}$ Check if $f$ has a root $x^2 +1\geq 1$, so $f$ has no real roots So, $\deg g,h =2$ $x^4+1=(x^2+ax+b)(x^2+cx+d)$ $= x^4 + \underbrace{(c+a)}*{=\ 0}x^3+\underbrace{(d+ad+b)}*{=\ 0}x^2 +\underbrace{(ad+bc)}*{=\ 0}x+\underbrace{bd}*{=\ 1}$

\begin{cases} \frac{1}{b}-a^2+b=0 \ a\cdot \frac{1}{b}-ba=0

\end{cases} \implies a=0\implies \frac{1}{b}=0\implies 1+b^2=0 \implies b=\frac{1}{b}\implies \frac{1}{b}-a^2+b=0\implies 2b-a^2=0\implies a^2=2b\implies a^2=-2 \text{ or } a^2 = 2 \implies \text{ Impossible in }\Bbb Q

Thus, $x^4 + 1$ is irreducible over $\Bbb Q$ However, $x^4+1$ is reducible over $\mathbb{R}$ $a=\sqrt2, b=1$, $(x^2+\sqrt 2x+1)(x^2-\sqrt 2x+1)=x^4+1$ **Note:** a polynomial has a linear factor $\iff$ it has a root Which polynomials are reducible over $\Bbb C?$ ## Fundamental Theorem of Algebra If $f(x)\in \Bbb C \[x\]$ and $f$ is non-constant, then $f$ has $f(x)$ has a complex root **Corollary:** 1. $f(x)\in \Bbb C\[x\] \text{ is irreducible } \iff f(x)\text{ is linear}$ **Proof:** $\impliedby \text{ always true}$ $\implies \text{By FTA, } \exists\ \alpha \in \Bbb C:f(\alpha ) = 0$ and we know an irreducible polynomial cannot have a root unless it is linear 1. If $f(x)\in \Bbb C\[x\], f$ is non-constant, $\deg f = n$, then: $f(x)=c(x\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n)\text{ for some } c_1\alpha \_1, \cdots c_n\alpha_n\in \Bbb C$ **Example:** $f(x)=x^3-1 \in \mathbb{R}\[x\]$ has a real root but it doesn’t split into 3 linear factors $x^3-1=(x-1)(x^2+x+1)$ **Proof:** Induction on $n$ Base case, $n=1$: $f(x)=ax+b=\underbrace a\_ c(x-(-\frac{b}{\underbrace{c}\_\\alpha}))$ Inductive Step: $\deg f= n+1$ By FTA, $\exists$ root of f, call it $\alpha \_{n+1} \in \Bbb C$ So, $f(\alpha *{n+1})=0\text{ and } x-\alpha*{n+1} \mid f(x)$ Thus, $\exists\ g(x)\in \Bbb C \[x\]\\ st.\ f(x)=g(x)(x-\alpha\_{n+1})$ Then, $\deg g = n$ and by the inductive hypothesis $g(x)=c(x-\alpha_1)\cdots(x-\alpha\_{n+1})$ because $f(x)=c(x-\alpha_1)\cdots(x-\alpha_n)(x-\alpha\_{n+1})$ **Corollary:** A polynomial over $\Bbb C\[x\]$ is irreducible $\iff$ it is linear **Theorem:** Let $f(x)\in \mathbb{R}\[x\]$ and $f$ is non-constant, Then, $f(x)=c(x-\beta_1)\cdots (x-\beta_x)\underbrace{q_1(x)\cdots q_m(x)}\_{\text{polynomials of deg 2}}$ So, irreducible polynomials over $\mathbb{R}$ have $\deg \in {\ 1,2 \ }$ Reminder: For $z\in \Bbb C$, if $z=x+iy,$ then $\bar z=x-iy$ and $\overline{z_1+z_2}= \bar z_1+\bar z_2,\ \overline{z_1z_2}=\bar z_1\bar z_2$ $z=\bar z \iff z=x$ **Proof:** Let $f(x)=a_nx^n+\cdots +a_1x+a_0\in \mathbb{R}\[x\],\ n\geq 1$ In particular, $f(x)\in \Bbb C \[x\]$ By corollary of FTA, $f(x)=c(x-\alpha_1)\cdots(x-\alpha_n)$ $\alpha_1,\cdots,\alpha_n\in \Bbb C, C\in \mathbb{R}$ for any $\alpha_i \in \Bbb C$ $f(\alpha_i)=0=a_n\alpha_i^n+\cdots + a_i\alpha \_i+a_0$ Applying Conjugation, $0=\bar 0= \overline{a_n\alpha_i^n+\cdots +a_i\alpha_i +a_0}\\ =\bar{a_n}\bar \alpha \_i^n+\cdots +\bar a_1\bar \alpha \_i+\bar a_0 \\ =a_n\bar \alpha_i^n+\cdots +a_1\bar \alpha_i+a_0=f(\overline \alpha_i)$ So, if $f(\alpha_i)=0,$ then $f(\bar \alpha_i)=0$ We know $f(x)=a_n(x-\alpha_1)\cdots(x-\alpha_n)\in \Bbb C$ $\forall \ 1\leq i\leq n,$ $\exists\ j\ st.\ \alpha_j=\overline \alpha_j$ Either $i=j \implies a_i\in \mathbb{R}$ or $i\neq j\implies \alpha_i =\overline \alpha \_j$ $f(x)=a_n\underbrace{(x-\beta_1)\cdots(x-\beta_k)}*{\in\ \mathbb{R}}\underbrace{(x-\overline \gamma_1)\cdots(x-\gamma_m)(x-\overline \gamma_m)}*{\in \ \Bbb C}$ For every $1\leq i \leq m$, $(x-\gamma_i)(x-\overline\gamma_i)=x^2-\underbrace{(\gamma_i+\overline\gamma_i)}*{\in\ R}+\underbrace{\gamma_i\overline \gamma_i}*{\in\ \mathbb{R}}=q_i(x) \square$ **Example:** $f(x)=x^4-x^2+1\in \mathbb{R}\[x\]$ Let $t=x^2$ $t^2-t+1\implies t=\frac{1}{2}\pm \frac{\sqrt 3}{2}i$ Over $\Bbb C,$ $f(x)=(x^2-(\frac{1}{2}+\frac{\sqrt3}{2}i))(x^2-(\frac{1}{2}-\frac{\sqrt3}{2}i))$ $\sqrt{\frac{1}{2}+\frac{\sqrt3}{2}i}$ ← Convert to polar using $r e^{i\theta}\ r=1, \ \theta =\frac{\pi}{3}$ $=\pm e^{\frac{\pi}{6}i}$ $\sqrt{\frac{1}{2}-\frac{\sqrt3}{2}}=\pm e^{-\frac{\pi}{6}i}$ $$f(x)=(x-e^{\frac{\pi}{6}i})(x+e^{\frac{\pi}{6}i})(x-e^{-\frac{\pi}{6}i})(x+e^{-\frac{\pi}{6}i})\\ =(x-e^{\frac{\pi}{6}i})(x-e^{-\frac{\pi}{6}i})(x+e^{\frac{\pi}{6}i})(x+e^{-\frac{\pi}{6}i})\\ =(x^2-(e^{\frac{\pi}{6}i}+e^{-\frac{\pi}{6}i})x+1)(x^2+(e^{\frac{\pi}{6}i}+e^{-\frac{\pi}{6}i})x+1)\\ =(x^2-2\cos\frac{\pi}6x+1)(x^2+2\cos\frac{\pi}6x+1)\\ =(x^2-\sqrt 3x+1)(x^2+\sqrt 3x+1)$$ # Field Extensions Over $\Bbb C$, $p(x)=c(x-\alpha_1)\cdots(x-\alpha_n)$ Definition: A field extension is $\phi:F\to K$ where $\phi$ is an injective ring homomorphism and $F\subseteq K$ Exercise: If F is a field and $\phi$ is any ring homomorphism, then $\phi$ is injective **Examples:** 1. $\Bbb Q\subseteq \mathbb{R}$ 1. $\mathbb{R}\subseteq \Bbb C$ 1. $\Bbb Q \subseteq \Bbb Q\[\\sqrt 2\]$ 1. If $F$ is a field and $f(x)$ is an irreducible polynomial then $\underbrace{F\[x\]/f(x)}\_{\text{field}} = {\ \overline{h(x)}: \deg h \< \deg f\ }$ $\phi: F \to F\[x\]/\braket{\ f(x)\ } \\ \\phi(a)=\overline a = a+\braket{\ f(x)\ }$ $\phi$ is an injective ring homomorphism 1. $F=\Bbb Q,\ f(x)=x^2-2$ $\phi:\Bbb Q\to \underbrace{\Bbb Q\[x\]/\braket{\ x^2-2\ }}\_k={\ \overline{a+bx}:\ a,b\in \Bbb Q\ }$ $\phi(a)=\bar a$ Consider $f(\lambda)=\lambda ^2-2$ $f(\lambda)\in \Bbb Q\[\\lambda\],f(\lambda)$ is irreducible But, $f(\lambda)\in K\[\\lambda\]$ irreducible and has a root $\Bbb Q\[x\]/\braket{\ x^2-2\ }=K\cong\Bbb Q\[\\sqrt 2\]$ $\psi:Q\[x\]\\to \Bbb Q\[\\sqrt 2\]$ $\psi(p(x))=p(\sqrt2)$ $(\overline x)^2-\overline 2= \overline x\cdot \overline x-\overline 2 = \overline{x^2-2} = \overline 0$ So, if $f(\lambda)$ is irreducible then in the field $K=F\[x\]/\braket{\ f(x)\ }$ $,\ f(\lambda)$ has a root $\overline x$ $\lambda ^2 -2$ factorization over $K$ $\lambda ^2 -2=(\lambda-\overline x)(\lambda +\overline x) = (\lambda-\sqrt 2)(\lambda +\sqrt x)$ 1. $\Bbb Q\[ \sqrt\[3\]{2}\]={\ a+b\sqrt\[3\]{2} +c\sqrt\[3\]{4}:a,b,c\in \Bbb Q\ }\subseteq \mathbb{R}$ is a field $\Bbb Q\[\\sqrt\[3\]{2}\]\\cong \Bbb Q\[x\]/\braket{\ x^3-2\ }$ **Proof:** Using the $1^{\text{st}}$ Isomorphism Theorem, $\phi:\Bbb Q\[x\]\\to \Bbb Q\[\\sqrt\[3\]{2}\]\\ \\phi(p(x))=p(\sqrt\[3\]{2})$ $x^3-2\in \ker \phi$ $\braket{\ x^3-2\ }\subseteq \ker \phi$ Claim: they are equal Notice that $\sqrt\[3\]{2} \notin \Bbb Q$ so $x^3-2$ has no roots in $\Bbb Q$. It is of $\deg 3$, thus it is irreducible Consequently, $\braket{\ x^3-2\ }$ is maximal Hence, $\braket{\ x^3-2\ } =\ker \phi$ So, $\Bbb Q\[x\]/\braket{\ x^3-2\ } =\Bbb Q\[x\]/\ker \phi \cong Im \phi = \Bbb Q\[\\sqrt\[3\]{2}\]$ $f(\lambda)=\lambda ^3 -2$ irreducible over $\Bbb Q$ but it is reducible over $K$ because it has a root $\implies \lambda - \sqrt\[3\]{2}\mid \lambda ^2-2$ over $K$

\begin{array}{r} \lambda^2+\sqrt[3]2\lambda\phantom{11111111111} \ \lambda-\sqrt[3]2\phantom{1}{\overline{\smash{\big)},\lambda^3-2\phantom{11111111111111}}} \ \underline{-(\lambda^3-\sqrt[3]2\lambda^2)} \phantom{1111111111}\ \sqrt[3]2\lambda^2-2\phantom{1111-1} \ \underline{-(\sqrt[3]2\lambda^2-\sqrt[3]4\lambda)}\phantom{1111} \ \sqrt[3]4\lambda-2\phantom{-11}\ \underline{\sqrt[3]4\lambda-\sqrt[3]4 \sqrt[3]4\phantom{}}\ 0

\end{array}

We have a factorization over $K$ $\lambda ^3-2=(\lambda -\sqrt\[3\]{2})(\lambda^2+\sqrt\[3\]{2}\lambda +\sqrt\[3\]4)$ $\Bbb Q\to \Bbb Q\[x\]/\braket{\ x^3-2\ } \cong K\to L=K\[y\]/\underbrace{\braket{\ y^2+\sqrt\[3\]2+\sqrt\[3\]4\ }}\_{\text{irreducible over }K}$ $(\lambda -\sqrt\[3\]2)(\lambda^2+\sqrt\[3\]2+\sqrt\[3\]4)$ **Theorem:** Let $f$ be a polynomial over $F$, then $\exists$ field $F\to K$ st. over $K,\ f(\lambda)=c(\lambda-\alpha_1)\cdots (\lambda-\alpha_n)$ splits In $L,\ \lambda ^3 -2$ splits --- Field Extension: $\phi \to K,$ $K$ extends F $K=F\to K \\ \phantom{00111}\phi \mapsto \overline \phi$ Recall from Linear Algebra: $F-\text{ Field}$ $V-\text{ Vector Space}$: abelian group with scalar multiples $\underbrace{\alpha}*{\in F} \cdot \underbrace{v}*{\in V} \in V$ An important case: If $F\to K$ is a field extension, then $K$ becomes an $F-\text{Vector Space}$ Given, $\alpha \in F,\ v\in K$ define scalar multiple by $\alpha \cdot v := \phi(\underbrace{\alpha}*{\in\ K})\cdot \underbrace{v}*{\in\ K}\in K$ **Examples:** 1. $F=\mathbb{R},\ k=\Bbb C,\ \mathbb{R}\subset \Bbb C$ is a field extension $\Bbb C$ is a vector space over $\Bbb R,$ $\Bbb C$ has vectors while $\mathbb{R}$ has scalars $1+i\in \Bbb C,\ -\frac{1}{2} \subset \mathbb{R}$ $(\frac{1}2 )(1+i)= -\frac{1}2 -\frac{1}2 i \in \Bbb C$ 1. $F-\text{Field}$, $f(x)\in F\[x\]$ is irreducible $K=F\[x\]/\braket{\ f(x)\ }$ $\phi: F\to K\\ \phantom{111} \alpha \mapsto\alpha +\braket{\ f(x)\ }= \overline \alpha$ $\underbrace{\alpha}*{\in \ F} \cdot \underbrace{\overline{p(x)}}*{\in\ K} = \alpha p(x) \in K$ For instance: $F=\mathbb{Z}\_3,\ f(x)=x^2+1$ $K=\mathbb{Z}\_3\[x\]/\braket{\ x^2+1\ }={\ \bar 0, \bar 1,\bar 2, \bar x,\overline{x+1},\overline{x+2},\overline{2x},\overline{2x+1},\overline{2x+2}\ }$ $\underbrace{2}\_{\in\ \mathbb{Z}*3}\cdot \underbrace{\overline{2x+1}}*{4\equiv 1(\text{mod }3)}=\overline{2(2x+1)}=\overline{x+2}$ **Recall:** If $V$ is a vector space over a field $F$, then it has a basis $B$. ($B$ is linearly independent and it spans $V$). If $|B|\<\\infty,\ \dim_F V=|B|$ $B={\ e_1,\cdots ,e_n\ },$ then every $v\in V$ can be uniquely represented as $v=\alpha \_1e_1+\cdots +\alpha \_n e_n,$ $\alpha \_i\in F$ There is a bijective correspondence $V\longleftrightarrow F\\ v\longleftrightarrow (\alpha_1,\cdots, \alpha_n)$ **Examples:** 1. $\mathbb{R}\subset \Bbb C$ $B={\ 1,i\ }\implies \dim\_\\mathbb{R}\Bbb C=2$ $\Bbb C \xleftrightarrow{1:1}\mathbb{R}^2\\ a+bi\longleftrightarrow (a,b)$ 1. $F-\text{Finite Field, } V-\text{Vector Space over } F$ $\dim_F V=n$ $V\xleftrightarrow{1:1} F^n$ $|V|=|F^n|=|F|^n$ If $|F|=q,$ then $|F^n|=q^n=|V|$ ### Characteristics of a Field $F-\text{Field}$ $1=1_F$ $1,1+1,1+1+1,\cdots$ If all these elements are distinct, then $\text{char}(F)=0$ $\text{char}(\Bbb Q)=0$ $\text{char}(\Bbb R)=0$ $\mathbb{Z}\_3={\ 0,1,2\ }$ $\text{char} (F)=\min\ {\ r\in \Bbb N:1_F+\cdots+1_F=0_F }$ So, $\text{char}(\mathbb{Z}\_p)=p$ $\mathbb{Z}\_3\[x\]/\braket{\ x^2+1\ }=K$ $1_F=\overline 1,\ \overline 1,\ \overline 1+\overline 1=\overline 2,\ \overline 1+\overline 1+\overline 1=\overline 0$, $\text{char}(K)=3$ If $F$ is a field with $\text{char}(F)=p,\ p\neq 0,$ then it is an extension of $\mathbb{Z}\_p$ Namely, there is a homomorphism $\phi: \mathbb{Z}*p\to F\\ \phi(0)=0_F,\phi(1)=1_F,\phi(2)=1_F+1_F, \\ \phi(p-1)=1_F+\underbrace{\cdots}*{p-1}+1_F$ Does not work unless $\text{char}(F)=p,$ $F=\mathbb{R},\ \phi:\mathbb{Z}\_3 \not\to \mathbb{R},\ \phi(0)=0,\ \phi(1)=1,\ \phi(2)=2$ $3=1+2=\phi(1)+\phi(2)=\phi(1+2)=\phi(3)=\phi(0)=0$ Suppose that $F$ is a finite field. $\text{char}(F)\neq 0$ $\underbrace{1_F+\cdots+1_F}*{m}=\underbrace{1_F+\cdots+1_F}*{m+r}\implies \underbrace{1_F+\cdots+1_F}\_{r}=0_F$ So finite fields have characteristic $>0$ and prime **Proposition:** F is a field, either $\text{char}(F)=0 or \text{char}(F)=p,\text{prime}$ **Proof:** Suppose $\text{char}(F)=r>0$, Assume to the contrary that $r$ is composite, $r=m_1\cdot m_2$ $(\underbrace{1_F+\cdots+1_F}*{m_1})\cdot(\underbrace{1_F+\cdots+1_F}*{m_2})= \underbrace{1_F+\cdots+1_F}\_{m_1\cdot m_2}=0_F$ Since $F$ is a field, it has no zero-divisors So either $\underbrace{1_F+\cdots + 1_F}*{m_1}=0_F$ or $\underbrace{1_F+\cdots + 1_F}*{m_2}=0_F$ Contradiction in either case becasue $m_1, m_2 \< r.\ \ \square$ **Summary:** 1. $F\text{ finite}\implies \text{char}(F)\neq 0$ 1. $\text{char}(F)\text{ is } 0 \text{ or }p, \text{ prime }$ 1. If $\text{char}(F)=p,\ \mathbb{Z}\_p\to F$ $F$ finite field $\implies \mathbb{Z}\_p\to F$ for $\text{char}(F)=p$ So, $F$ is a vector space over $\mathbb{Z}\_p$ Since $F$ is finite, $\dim\_{\mathbb{Z}\_p}F=n\<\\infty$ $F\xleftrightarrow{1:1}\mathbb{Z}\_p$ $|F|=|\mathbb{Z}\_p^n|=p^n$ **Corollary:** If $F$ is a finite field, then $|F|=p^n$ for $p$ prime **Reminder:** If F is a finite field, then $|F|=p^n$, $p=\text{ char} (F)$ (prime), $n\in N$ ( Idea: $\mathbb{Z}\_p\to F,\ F$ is a $\mathbb{Z}\_p-$ vector space so $|F|=|\mathbb{Z}\_p^n|=p^n$ $\text{char }(F)= \text{min}{\ r\mid 1_F\ \underbrace{+\cdots +}\_r\ 1_F=0_F}$ Goal: If $p$ - prime, $n\in \mathbb{N}$ then $\exists\ F$ - field, $|F|=p^n$ **Lemma:** If $F$is a field, $\text{char} (F)=p$ (>0) then, $\forall a,b\in F:$

\begin{cases} (a\cdot b)^{p^i}= a^{p^i}\cdot b^{p^i} \ (a+ b)^{p^i}= a^{p^i}+ b^{p^i} \end{cases}

In other words, $\phi:F\to F \\ \phi(a)=a^p$ is a ring homomorphism. (Frobenius endomorphism **Proof:** 1. EZ 1. $i=1: (a\cdot b)^{p^i}=^? a^{p^i}\cdot b^{p^i}$

(a\cdot b)^{p^i}= \sum_{k=0}^p \begin{pmatrix}p\k\end{pmatrix}a^kb^{p-k}

Claim: If $0\<k\<p$ then $\begin{pmatrix}p\\k\end{pmatrix}=0\_{mod\ p}$ (divisible by p) **Example:** Proof of claim: $\begin{pmatrix}p\\k\end{pmatrix}= \frac{p!}{k!(p-k)!},\ k=0,p\ : k,p-k\<p$, So, $p$ does not factor the denominator! (p is prime and $k!(p-k)!$ is a product of numbers $\< p$. But $p\mid p'$, so $p\mid \frac{p!}{k!(p-k)!}$ Proof of Lemma:

(a\cdot b)^{p}= \sum_{k=0}^p \begin{pmatrix}p\k\end{pmatrix}a^kb^{p-k}=\begin{pmatrix}p\0\end{pmatrix}a^0b^{p-0}+\begin{pmatrix}p\p\end{pmatrix} a^pb^{p-p}=a^p+b

More completely, we proved that $(a+b)^p=a^p+b^p+ \underbrace{p\cdot f(a,b)}\_{f(a,b)\cdot (1_F+\cdots + 1_F)}$ ← a polynomial in $a,b$ General $i$: induction, $i+1: (a+b)^{p^{i+1}}= ((a+b)^{p^i})^p= (a^{p^i}+b^{p^i})^p= A^p+B^p=(a^{p^i})^p+(b^{p^i})^p= a^{p^{i+1}}+b^{p^{i+1}}$ Proposition: Let $K$ be a field, $\text{char(K)}=p$ Let $n\geq 1$ then ${\ x\in K \mid x^{p^n}=x\ }\subseteq K$ is a subring. Moreover, it is a field **Exercise:** Prove that this is a subring Pick $x\in S, x\neq 0$ We know that $x^{p^n}= x\implies x^{p^n}-x=0\implies x\cdot (x^{p^n-1}-1)=0$ But K is a field $\implies$ no zero divisors s.t. $x\neq 0\implies p^{p^n-1}=1 \implies \underbrace{x^{p^n-2}}\_{\text{inverse of x}}\cdot x = x^{p^n-1}= 1\ \square$ Strategy: $p^n$ * $\mathbb{Z}\_p,\ f(x)=x^{p^n}-x$ * $\exists\ \mathbb{Z}*p \to \underbrace{K}*{\text{Field}}$ : $f(x) = (x-\alpha_n)\cdot (x-\alpha\_{p^n})$ (aka splitting field) * $S={\ x\in k\mid x^{p^n}=x\ }\subseteq K$. By the proposition, $S$ is a field. Aim, $|S|=p^n$ 1. $|S|\leq p^n$, notice that the elements of S are roots of $f(x)=x^{p^n}=x$ in the field $K$ Therefore, $f(x)$ has at most $\underbrace{p^n}\_{\text{deg(f)}}$ roots, so $|S|\leq p^n$ 1. $|S|\geq p^n$, $S={\ \alpha_n, \cdots , \alpha \_{p^n}\ }$ - roots of $f(x)=(x-\alpha_1)\cdots (x-\alpha \_n)$ in K, but we need to show that they are all distinct. **Definition:** (derivative)

\boxed {f(x)=a_nx^n+\cdots+a_nx+a_0\implies f’(x)=na_nx^{n-1} + \cdots+2a_2x+a_1}

**Example:** $F=\mathbb{Z}\_3$ $f(x)=2x^5+x^3+2x\implies f'(x)=\underbrace{10x^5}\_1+\underbrace{3x^2}\_0+2=\underline{x^5+2}$ ### Leibniz Rule $(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$ This is still true over any field with the formal definition ### Multiple Factors and Derivatives If $g(x)^2 \mid f(x)$ then $g(x)\mid f'(x),\ (f,g\in F\[x\])$ Proof: Write $f(x)=g(x)^2\cdot h(x)$ for some $h\in F\[x\],$ so by Leibniz rule,

f’(x)=(g(x)^2\cdot h(x))’=\underbrace{(g(x)^2)}‘h(x)+g(x)^2\cdot h’(x) = g(x)(2g’(x)h(x)+g(x)h’(x)

So, $g(x) \mid f'(x)$ **Corollary:** If $(x-\alpha )^2 \mid f(x)$ then $x-\alpha \mid f'(x)$ $(((x-\alpha)^2)'=2x-2\alpha = 2(x-\alpha )$ We aimed to prove $f(x)= x^{p^n}-x= (x-\alpha_n)\cdots (x-\alpha \_{p^n})$ has $p^n$ distinct roots in K, that is, ${\ \alpha_n,\cdots , \alpha \_{p^n}\ }$ are distinct. If $\alpha \_i=\alpha \_j\ (i\neq j)$ then, $(x-\alpha \_i)^2 \mid f(x)$ By the corollary, $x-\alpha \_i \mid f'(x)$ $f(x)= x^{p^n}-x \implies f'(x)=\underbrace{p^n}\_{0 \text{ b/c char(K)=p }}x^{p^n-1}-1 = -1$ So, $x-\alpha_i \mid -1$ is impossible So, all roots are distinct, Consequently, $S={\ x\in K \mid x^{p^n}-x\ } \subseteq K$ is a field of size $p^n$ $1_F+\cdots+1_F=0_F$ $x+\cdots+x=x\cdot (1_F+\cdots+ 1_F) = x\cdot 0_F = 0_F$ ### Properties of Finite Fields Let $F$ be a field 1. $|F|=p^n,\ p=\text{char}(F),\ p \text{ prime}$ 1. $\forall\ p \text{ prime},\ n\geq 1, \exists\ \text{field} \ |F|=p^n$ 1. If $F$ and $K$ are fields $st.\ |F|=|K|=p,\ F\cong K$ 1. $|F^x|=p^n-1,$ abelian group 1. $F^x$ is a cyclic group $F^x\cong \mathbb{Z}\_{p^n-1}$ 1. $|F|=p^n\ \forall\ x\in F^x,\ x^{p^n-1}=1$ By Lagrange Theorem, $\text{ord}(x) \mid |F^x|$ so, $x^{p^n-1}= x^{|F^x|}=1$ 1. $\forall\ x\in F,\ x^{p^n}=x$ 1. $F\subseteq\ K, F$ is a subfield of $K$ $|F|=p^n,\ |K|=p^m,\text{ and } n\mid m$ $K$ is a vector space over $F$ There is no subfield of size $8$ over a field of size $16$ because $8=2^3,\ 16=2^4,\ 3 \not| \ 4$ 1. $|K|=p^m,\ n\mid m,$ then $F={\ x\in K:x^{p^n}=x\ }$ is a subfield of $K,\ |F|=p^n$ ### Fermat’s Little Theorem $\forall\ a\in \mathbb{Z},\ a^p=a(\text{mod } p), 7\implies \text{theorem}$ **Examples:** How many roots does $x^7-1$ have in $F:$ 1. $|F|=27\implies |F^x|=26$ $\text{ord}\_{F^x}(x)\in {\ 1,7\ }, \ 7\not |\ 26,$ so $x=1$, only $1$ root 1. $|F|=8\implies |F^x|=7$ $7\mid 7 ,$ so we have $7$ roots # Applications ## **Diffie–Hellman Protocol** $F- \text{Finite Field}$ $g\in F^x$ $n=\text{ord}\_{F^x}(g)$

\begin{matrix} \text{Alice} & \xrightleftharpoons[g^Y]{g^X} & \text{Bob} \ \ 1\leq X\leq n-1 && 1\leq Y\leq n-1

\end{matrix}

### Subgroup Attack For $a\in \mathbb{N}$

\begin{matrix} \text{Alice} & \xrightleftharpoons[(g^Y)^a]{g^X} &\text{Eve} &\xrightleftharpoons[g^Y]{(g^X)^a} & \text{Bob} \ \Downarrow&&&&\Downarrow\ K=g^{axy}&&&&K=g^{axy} \end{matrix}

Take $a\in \mathbb{N}:\ a\mid n,\ \frac{n}a$ is “small” Now, $K=K=g^{axy}=(g^a)^{xy}$ $\text{ord}*{F^x}(g^a)=\frac{\text{ord}*{F^x}(g)^n}{\gcd(\text{ord}\_{F^x}a)}= \frac{n}{\gcd(n,m)}=\frac{n}{a}$← small number Therefore, $|\braket{\ g^n\ }|= \frac{n}{a}$ and $K\in \braket{\ g^n\ }$ So, Eve can apply brute force to recover $K$ **Solution:** Take $g\in F^x\ st.\ \text{ord}(g)=n$ is prime **Examples:** $\mathbb{Z}*{73}=F\implies |F|^x=72,\ F^x\cong \mathbb{Z}*{72},$ $\ n=72,\ a=36,24,\cdots,\ \frac{n}a = 2,3,\cdots$ $F=\mathbb{Z}\_{83}$ $|F^x|=83-1=82= 2\cdot 41$ $g\in F^x$ where the order is $41$ ## Error-Correcting Codes Assume we are sending a message $s=(s_0,\cdots , s\_{n-1}) \in \mathbb{Z}\_2^n$ Possible Solution: Send the message multiple times This solution is highly inefficient because we are sending n bits of information multiple times. A more efficient solution:

\begin{matrix} s\in \mathbb{Z}_2^n &&s’+\text{error} \ \Downarrow && \Downarrow\ s’\in \mathbb{Z}_2^{n+r}&&s \end{matrix}

### Errors and Hamming Distance $x,y\in \mathbb{Z}\_2^n$ $d(x,y)=$ # of entries which are distinct on $x$ vs $y$ Example:

x=\begin{pmatrix} 1\1\0\1\0 \end{pmatrix},\ y=\begin{pmatrix} 1\0\0\1\1 \end{pmatrix}\implies d(x,y)=2

The hamming distance between $x$ and $y$ is 2 because they differ in two locations in the second position and the last position **Code:** $C\subseteq \mathbb{Z}\_2^n$, a subspace We say that $C$ s an $\[n,k\]$ - code $\implies k=\dim\_{\mathbb{Z}\_2}C$ $|C|=2^n$ **Encoding:**

\underbrace{\mathbb{Z}2^k}{\text{original message}}\to C\subseteq \underbrace{\mathbb{Z}2^n}{\text{encoded message}}

$M\in M\_{n,k}(\mathbb{Z}\_2)$ Encode: $s\mapsto M_s$ * If $\forall\ x\neq y\in C,\ d(x,y) \geq d,$ then the code can correct at least $\frac{d}2$ errors Cycle Code: $C\leq \mathbb{Z}\_2^n$ a code such that if some code in C, then any cyclic shift is also in C

\begin{pmatrix} c_0\\vdots\ c_{n-1} \end{pmatrix}\in C\implies\begin{pmatrix} c_i\c_{i+1}\\vdots\ c_{n-1}\c_0\ \vdots\ c_{i-1} \end{pmatrix}\in C

**Question:** How can we create cyclic codes? Consider the polynomial ring: $\mathbb{Z}*2\[x\]/\braket{\ x^n-1\ }={ \overline{c_0+c_1x \cdots +c*{n-1}x^{n-1}} \mid c_0,\cdots,c\_{n-1}\in \mathbb{Z}\_2} \longleftrightarrow \mathbb{Z}\_2^n$

\mathbb{Z}2[x]/\braket{\ x^n-1\ }={\ \overline{c_0+c_1x \cdots +c{n-1}x^{n-1}} \mid c_0,\cdots,c_{n-1}\in \mathbb{Z}_2\ } \longleftrightarrow \mathbb{Z}_2

\overline{c_0+c_1x+\cdots +c_{n-1}}\xleftrightarrow{1:1}\begin{pmatrix}c_0\ \vdots\ c_{n-1}\end{pmatrix}

**Theorem:** $C\leq \mathbb{Z}\_2^n$ is a cyclic code $\iff \braket{\ g(x)\ }\lhd \mathbb{Z}\_2\[x\]/\braket{\ x^n-1\ }$ We call $g(x)$ the generating polynomial of $C$ **Question:** How do we find, $g(x)\in \mathbb{Z}\_2\[x\]$ such that $C$ is a “good” code? Firstly, notice that the whole process can be formed when $\mathbb{Z}\_2$ is replaced by any field $K$ $\mathbb{Z}\_2\to K,\ |K|=2^r$ $K-\text{finite field}$ $\gamma = K^x$ $\implies \text{ord}\_{k^x}(\gamma)=q-1$ **Example:** $K=\mathbb{Z}\_2\[x\]/\braket{\ x^3+x+1\ }$ $\overline x \in K$ $\overline {x^{\phantom{1}}}, \overline {x^2}, \overline {x^3} = \overline{x+1}$ $\overline {x^4}=\overline{x^2+x},\ \overline {x^5}=\overline{x^2+x+1}$ $\overline {x ^6}=\overline{x^2+1},\ \overline {x^7}=\overline1$ ### **Bose–Chaudhuri–Hocquenghem (1960)** **Theorem:** Suppose that $K$ is a finite field, $|K|=q$ If $\gamma \in K^x$ of $\text{ord}*{K^x}(\gamma)=n,\ \gcd(\underbrace{n}*{\text{odd}},q)=1$$\text{ord}\_{K^x}(\gamma)=n,\ \gcd(n,q)=1$ $|K|=2^r$ $q(x)\in K\[x\]$ such that $g(\gamma)=g(\gamma^2)=\cdots=g(\gamma^{d-1})=0$ Then, $\braket{\ g(x)\ }\subseteq K\[x\]/\braket{\ x^n-1\ }$ is a cyclic code which corrects at least $\frac{d}2$ errors Note: For a code over $\mathbb{Z}\_2,$ replace each $\alpha \in K$ by a length $r$ vector over $\mathbb{Z}\_2$